d <-
read.table
(file =
"ChickData.csv"
,
header = T, sep =
","
)
print
(d)
names
(d)
levels
(d$feed)
table
(d$feed)
boxplot
(d$weight~d$feed, las = 1,
ylab =
"weight (g)"
,
xlab =
"feed"
,
main =
"Weight by Feed"
)
mean
(d$weight[d$feed ==
"casein"
])
mean
(d$weight[d$feed ==
"meatmeal"
])
test.stat1 <-
abs
(
mean
(d$weight[d$feed ==
"casein"
]) -
mean
(d$weight[d$feed ==
"meatmeal"
]))
test.stat1
median
(d$weight[d$feed ==
"casein"
])
median
(d$weight[d$feed ==
"meatmeal"
])
test.stat2 <-
abs
(
median
(d$weight[d$feed ==
"casein"
]) -
median
(d$weight[d$feed ==
"meatmeal"
]))
test.stat2
set.seed
(1979)
n <-
length
(d$feed)
P <- 100000
variable <- d$weight
PermSamples <-
matrix
(0, nrow = n, ncol = P)
for
(i
in
1:P)
{
PermSamples[, i] <-
sample
(variable,
size = n,
replace =
FALSE
)
}
PermSamples[, 1:5]
Perm.test.stat1 <- Perm.test.stat2 <-
rep
(0, P)
for
(i
in
1:P)
{
Perm.test.stat1[i] <-
abs
(
mean
(PermSamples[d$feed ==
"casein"
,i]) -
mean
(PermSamples[d$feed ==
"meatmeal"
,i]))
Perm.test.stat2[i] <-
abs
(
median
(PermSamples[d$feed ==
"casein"
,i]) -
median
(PermSamples[d$feed ==
"meatmeal"
,i]))
}
test.stat1; test.stat2
round
(Perm.test.stat1[1:15], 1)
round
(Perm.test.stat2[1:15], 1)
(Perm.test.stat1 >= test.stat1)[1:15]
mean
((Perm.test.stat1 >= test.stat1)[1:15])
mean
(Perm.test.stat1 >= test.stat1)
mean
(Perm.test.stat2 >= test.stat2)