Pattern Searching using Suffix Tree
Last Updated :
23 Jul, 2025
Given a text txt[0..n-1] and a pattern pat[0..m-1], write a function search(char pat[], char txt[]) that prints all occurrences of pat[] in txt[]. You may assume that n > m.
Preprocess Pattern or Preprocess Text?
We have discussed the following algorithms in the previous posts: KMP Algorithm Rabin Karp Algorithm Finite Automata based Algorithm Boyer Moore Algorithm
All of the above algorithms preprocess the pattern to make the pattern searching faster. The best time complexity that we could get by preprocessing pattern is O(n) where n is length of the text. In this post, we will discuss an approach that preprocesses the text. A suffix tree is built of the text. After preprocessing text (building suffix tree of text), we can search any pattern in O(m) time where m is length of the pattern. Imagine you have stored complete work of William Shakespeare and preprocessed it. You can search any string in the complete work in time just proportional to length of the pattern. This is really a great improvement because length of pattern is generally much smaller than text. Preprocessing of text may become costly if the text changes frequently. It is good for fixed text or less frequently changing text though.
A Suffix Tree for a given text is a compressed trie for all suffixes of the given text. We have discussed Standard Trie. Let us understand Compressed Trie with the following array of words.
{bear, bell, bid, bull, buy, sell, stock, stop}
Following is standard trie for the above input set of words.

Following is the compressed trie. Compress Trie is obtained from standard trie by joining chains of single nodes. The nodes of a compressed trie can be stored by storing index ranges at the nodes.
How to build a Suffix Tree for a given text?
As discussed above, Suffix Tree is compressed trie of all suffixes, so following are very abstract steps to build a suffix tree from given text. 1) Generate all suffixes of given text. 2) Consider all suffixes as individual words and build a compressed trie. Let us consider an example text "banana\0" where '\0' is string termination character. Following are all suffixes of "banana\0"
banana\0
anana\0
nana\0
ana\0
na\0
a\0
\0
If we consider all of the above suffixes as individual words and build a trie, we get following.
If we join chains of single nodes, we get the following compressed trie, which is the Suffix Tree for given text "banana\0"
Please note that above steps are just to manually create a Suffix Tree. We will be discussing actual algorithm and implementation in a separate post.
How to search a pattern in the built suffix tree?
We have discussed above how to build a Suffix Tree which is needed as a preprocessing step in pattern searching.
Following are abstract steps to search a pattern in the built Suffix Tree.
1) Starting from the first character of the pattern and root of Suffix Tree, do following for every character. .....
a) For the current character of pattern, if there is an edge from the current node of suffix tree, follow the edge. .....
b) If there is no edge, print "pattern doesn't exist in text" and return.
2) If all characters of pattern have been processed, i.e., there is a path from root for characters of the given pattern, then print "Pattern found". Let us consider the example pattern as "nan" to see the searching process. Following diagram shows the path followed for searching "nan" or "nana".
How does this work?
Every pattern that is present in text (or we can say every substring of text) must be a prefix of one of all possible suffixes. The statement seems complicated, but it is a simple statement, we just need to take an example to check validity of it.
Applications of Suffix Tree
Suffix tree can be used for a wide range of problems. Following are some famous problems where Suffix Trees provide optimal time complexity solution.
1) Pattern Searching
2) Finding the longest repeated substring
3) Finding the longest common substring
4) Finding the longest palindrome in a string
There are many more applications. See this for more details. Ukkonen’s Suffix Tree Construction is discussed in following articles:
Ukkonen’s Suffix Tree Construction – Part 1
Ukkonen’s Suffix Tree Construction – Part 2
Ukkonen’s Suffix Tree Construction – Part 3
Ukkonen’s Suffix Tree Construction – Part 4
Ukkonen’s Suffix Tree Construction – Part 5
Ukkonen’s Suffix Tree Construction – Part 6
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem