Open In App

Pandas - Remove special characters from column names

Last Updated : 05 Sep, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report

Let us see how to remove special characters like #, @, &, etc. from column names in the pandas data frame.  Here we will use replace function for removing special character.

Example 1: remove a special character from column names

Python
# import pandas
import pandas as pd

# create data frame
Data = {'Name#': ['Mukul', 'Rohan', 'Mayank',
                  'Shubham', 'Aakash'],
        
        'Location': ['Saharanpur', 'Meerut', 'Agra',
                     'Saharanpur', 'Meerut'],
        
        'Pay': [25000, 30000, 35000, 40000, 45000]}

df = pd.DataFrame(Data)

# print original data frame
print(df)

# remove special character
df.columns = df.columns.str.replace('[#,@,&]', '')

# print file after removing special character
print("\n\n", df)

Output:

Here, we have successfully remove a special character from the column names. Now we will use a list with replace function for removing multiple special characters from our column names.

Example 2: remove multiple special characters from the pandas data frame

Python
# import pandas
import pandas as pd

# create data frame
Data = {'Name#': ['Mukul', 'Rohan', 'Mayank',  
                 'Shubham', 'Aakash'],  
        
        'Location@' : ['Saharanpur', 'Meerut', 'Agra',  
                      'Saharanpur', 'Meerut'],
        
        'Pay&' : [25000,30000,35000,40000,45000]}  

df=pd.DataFrame(Data)

# print original data frame
print(df)

# remove special character
df.columns=df.columns.str.replace('[#,@,&]','')

# print file after removing special character
print("\n\n" , df)

Output:


Article Tags :
Practice Tags :

Similar Reads