Given an unsorted array, the task is to sort the given array. You are allowed to do only following operation on array.
- flip(arr, i): Reverse array from 0 to i
Examples:
Input: arr[] = { 23, 10, 20, 11, 12, 6, 7 }
Output: { 6, 7, 10, 11, 12, 20, 23}
Input: arr[] = { 0, 1, 1, 0, 0 }
Output: { 0, 0, 0, 1, 1 }
Approach: Unlike a traditional sorting algorithm, which attempts to sort with the fewest comparisons possible, the goal is to sort the sequence in as few reversals as possible.
The idea is to do something similar to Selection Sort. We one by one place maximum element at the end and reduce the size of current array by one.
Following are the detailed steps. Let given array be arr[] and size of array be n.
- Start from current size equal to n and reduce current size by one while it's greater than 1. Let the current size be curr_size.
- Do following for every curr_size
- Find index of the maximum element in arr[0 to curr_szie-1]. Let the index be 'mi'
- Call flip(arr, mi)
- Call flip(arr, curr_size - 1)
See following video for visualization of the above algorithm.
https://www.youtube.com/embed/kk-_DDgoXfk
Below is the implementation:
C
// C program to
// sort array using
// pancake sort
#include <stdio.h>
#include <stdlib.h>
/* Reverses arr[0..i] */
void flip(int arr[], int i)
{
int temp, start = 0;
while (start < i) {
temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Returns index of the
// maximum element in
// arr[0..n-1]
int findMax(int arr[], int n)
{
int mi, i;
for (mi = 0, i = 0; i < n; ++i)
if (arr[i] > arr[mi])
mi = i;
return mi;
}
// The main function that
// sorts given array using
// flip operations
void pancakeSort(int* arr, int n)
{
// Start from the complete
// array and one by one
// reduce current size
// by one
for (int curr_size = n; curr_size > 1;
--curr_size)
{
// Find index of the
// maximum element in
// arr[0..curr_size-1]
int mi = findMax(arr, curr_size);
// Move the maximum
// element to end of
// current array if
// it's not already
// at the end
if (mi != curr_size - 1) {
// To move at the end,
// first move maximum
// number to beginning
flip(arr, mi);
// Now move the maximum
// number to end by
// reversing current array
flip(arr, curr_size - 1);
}
}
}
// A utility function to print
// n array of size n
void printArray(int arr[], int n)
{
for (int i = 0; i < n; ++i)
printf("%d ", arr[i]);
}
// Driver program to test above function
int main()
{
int arr[] = { 23, 10, 20, 11, 12, 6, 7 };
int n = sizeof(arr) / sizeof(arr[0]);
pancakeSort(arr, n);
puts("Sorted Array ");
printArray(arr, n);
return 0;
}
CPP
// C++ program to
// sort array using
// pancake sort
#include<bits/stdc++.h>
using namespace std;
/* Reverses arr[0..i] */
void flip(int arr[], int i)
{
int temp, start = 0;
while (start < i)
{
temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Returns index of the
// maximum element in
// arr[0..n-1]
int findMax(int arr[], int n)
{
int mi, i;
for (mi = 0, i = 0; i < n; ++i)
if (arr[i] > arr[mi])
mi = i;
return mi;
}
// The main function that
// sorts given array using
// flip operations
void pancakeSort(int *arr, int n)
{
// Start from the complete
// array and one by one
// reduce current size
// by one
for (int curr_size = n; curr_size > 1;
--curr_size)
{
// Find index of the
// maximum element in
// arr[0..curr_size-1]
int mi = findMax(arr, curr_size);
// Move the maximum
// element to end of
// current array if
// it's not already
// at the end
if (mi != curr_size-1)
{
// To move at the end,
// first move maximum
// number to beginning
flip(arr, mi);
// Now move the maximum
// number to end by
// reversing current array
flip(arr, curr_size-1);
}
}
}
// A utility function to print
// n array of size n
void printArray(int arr[], int n)
{
for (int i = 0; i < n; ++i)
cout<< arr[i]<<" ";
}
// Driver program to test above function
int main()
{
int arr[] = {23, 10, 20, 11, 12, 6, 7};
int n = sizeof(arr)/sizeof(arr[0]);
pancakeSort(arr, n);
cout<<"Sorted Array "<<endl;
printArray(arr, n);
return 0;
}
//This code is contributed by rathbhupendra
Java
// Java program to
// sort array using
// pancake sort
import java.io.*;
class PancakeSort {
/* Reverses arr[0..i] */
static void flip(int arr[], int i)
{
int temp, start = 0;
while (start < i)
{
temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Returns index of the
// maximum element in
// arr[0..n-1]
static int findMax(int arr[], int n)
{
int mi, i;
for (mi = 0, i = 0; i < n; ++i)
if (arr[i] > arr[mi])
mi = i;
return mi;
}
// The main function that
// sorts given array using
// flip operations
static int pancakeSort(int arr[], int n)
{
// Start from the complete
// array and one by one
// reduce current size by one
for (int curr_size = n; curr_size > 1;
--curr_size)
{
// Find index of the
// maximum element in
// arr[0..curr_size-1]
int mi = findMax(arr, curr_size);
// Move the maximum element
// to end of current array
// if it's not already at
// the end
if (mi != curr_size-1)
{
// To move at the end,
// first move maximum
// number to beginning
flip(arr, mi);
// Now move the maximum
// number to end by
// reversing current array
flip(arr, curr_size-1);
}
}
return 0;
}
/* Utility function to print array arr[] */
static void printArray(int arr[], int arr_size)
{
for (int i = 0; i < arr_size; i++)
System.out.print(arr[i] + " ");
System.out.println("");
}
/* Driver function to check for above functions*/
public static void main (String[] args)
{
int arr[] = {23, 10, 20, 11, 12, 6, 7};
int n = arr.length;
pancakeSort(arr, n);
System.out.println("Sorted Array: ");
printArray(arr, n);
}
}
/* This code is contributed by Devesh Agrawal*/
Python3
# Python3 program to
# sort array using
# pancake sort
# Reverses arr[0..i] */
def flip(arr, i):
start = 0
while start < i:
temp = arr[start]
arr[start] = arr[i]
arr[i] = temp
start += 1
i -= 1
# Returns index of the maximum
# element in arr[0..n-1] */
def findMax(arr, n):
mi = 0
for i in range(0,n):
if arr[i] > arr[mi]:
mi = i
return mi
# The main function that
# sorts given array
# using flip operations
def pancakeSort(arr, n):
# Start from the complete
# array and one by one
# reduce current size
# by one
curr_size = n
while curr_size > 1:
# Find index of the maximum
# element in
# arr[0..curr_size-1]
mi = findMax(arr, curr_size)
# Move the maximum element
# to end of current array
# if it's not already at
# the end
if mi != curr_size-1:
# To move at the end,
# first move maximum
# number to beginning
flip(arr, mi)
# Now move the maximum
# number to end by
# reversing current array
flip(arr, curr_size-1)
curr_size -= 1
# A utility function to
# print an array of size n
def printArray(arr, n):
for i in range(0,n):
print ("%d"%( arr[i]),end=" ")
# Driver program
arr = [23, 10, 20, 11, 12, 6, 7]
n = len(arr)
pancakeSort(arr, n);
print ("Sorted Array ")
printArray(arr,n)
# This code is contributed by shreyanshi_arun.
C#
// C# program to sort array using
// pancake sort
using System;
class GFG {
// Reverses arr[0..i]
static void flip(int []arr, int i)
{
int temp, start = 0;
while (start < i)
{
temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Returns index of the
// maximum element in
// arr[0..n-1]
static int findMax(int []arr, int n)
{
int mi, i;
for (mi = 0, i = 0; i < n; ++i)
if (arr[i] > arr[mi])
mi = i;
return mi;
}
// The main function that
// sorts given array using
// flip operations
static int pancakeSort(int []arr, int n)
{
// Start from the complete
// array and one by one
// reduce current size by one
for (int curr_size = n; curr_size > 1;
--curr_size)
{
// Find index of the
// maximum element in
// arr[0..curr_size-1]
int mi = findMax(arr, curr_size);
// Move the maximum element
// to end of current array
// if it's not already at
// the end
if (mi != curr_size - 1)
{
// To move at the end,
// first move maximum
// number to beginning
flip(arr, mi);
// Now move the maximum
// number to end by
// reversing current array
flip(arr, curr_size - 1);
}
}
return 0;
}
// Utility function to print
// array arr[]
static void printArray(int []arr,
int arr_size)
{
for (int i = 0; i < arr_size; i++)
Console.Write(arr[i] + " ");
Console.Write("");
}
// Driver function to check for
// above functions
public static void Main ()
{
int []arr = {23, 10, 20, 11, 12, 6, 7};
int n = arr.Length;
pancakeSort(arr, n);
Console.Write("Sorted Array: ");
printArray(arr, n);
}
}
// This code is contributed by nitin mittal.
PHP
<?php
// PHP program to
// sort array using
// pancake sort
/* Reverses arr[0..i] */
function flip(&$arr, $i)
{
$start = 0;
while ($start < $i)
{
$temp = $arr[$start];
$arr[$start] = $arr[$i];
$arr[$i] = $temp;
$start++;
$i--;
}
}
// Returns index of the
// maximum element in
// arr[0..n-1]
function findMax($arr, $n)
{
$mi = 0;
for ($i = 0; $i < $n; ++$i)
if ($arr[$i] > $arr[$mi])
$mi = $i;
return $mi;
}
// The main function that
// sorts given array using
// flip operations
function pancakeSort(&$arr, $n)
{
// Start from the complete
// array and one by one
// reduce current size
// by one
for ($curr_size = $n; $curr_size > 1;
--$curr_size)
{
// Find index of the
// maximum element in
// arr[0..curr_size-1]
$mi = findMax($arr, $curr_size);
// Move the maximum
// element to end of
// current array if
// it's not already
// at the end
if ($mi != $curr_size-1)
{
// To move at the end,
// first move maximum
// number to beginning
flip($arr, $mi);
// Now move the maximum
// number to end by
// reversing current array
flip($arr, $curr_size-1);
}
}
}
// A utility function to print
// n array of size n
function printArray($arr, $n)
{
for ($i = 0; $i < $n; ++$i)
print($arr[$i]." ");
}
// Driver code
$arr = array(23, 10, 20, 11, 12, 6, 7);
$n = count($arr);
pancakeSort($arr, $n);
echo("Sorted Array \n");
printArray($arr, $n);
return 0;
// This code is contributed by chandan_jnu
?>
JavaScript
<script>
// JavaScript program to sort array using pancake sort
// Reverses arr[0..i]
function flip(arr, i)
{
let temp, start = 0;
while (start < i)
{
temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Returns index of the
// maximum element in
// arr[0..n-1]
function findMax(arr, n)
{
let mi, i;
for (mi = 0, i = 0; i < n; ++i)
if (arr[i] > arr[mi])
mi = i;
return mi;
}
// The main function that
// sorts given array using
// flip operations
function pancakeSort(arr, n)
{
// Start from the complete
// array and one by one
// reduce current size by one
for (let curr_size = n; curr_size > 1; --curr_size)
{
// Find index of the
// maximum element in
// arr[0..curr_size-1]
let mi = findMax(arr, curr_size);
// Move the maximum element
// to end of current array
// if it's not already at
// the end
if (mi != curr_size - 1)
{
// To move at the end,
// first move maximum
// number to beginning
flip(arr, mi);
// Now move the maximum
// number to end by
// reversing current array
flip(arr, curr_size - 1);
}
}
return 0;
}
// Utility function to print
// array arr[]
function printArray(arr, arr_size)
{
for (let i = 0; i < arr_size; i++)
document.write(arr[i] + " ");
document.write("");
}
let arr = [23, 10, 20, 11, 12, 6, 7];
let n = arr.length;
pancakeSort(arr, n);
document.write("Sorted Array: " + "</br>");
printArray(arr, n);
</script>
OutputSorted Array
6 7 10 11 12 20 23
Time Complexity: O(n2), Total O(n) flip operations are performed in above code
Auxiliary Space: O(1)
Recursive Approach
Another approach to implement pancake sort in C++ is by using a recursive algorithm .
Approach :
Step 1: Define a function to flip a subarray of the given array. This function takes two arguments: the array to be flipped, and the index of the last element of the subarray to be flipped.
Step 2: Define a function to find the index of the maximum element in a given subarray of the array. This function takes two arguments: the array to be searched, and the index of the last element of the subarray to be searched.
Step 3: Iterate over the input array from the end towards the beginning, and for each element i, do the following:
- Find the index of the maximum element in the subarray arr[0:i].
- If the maximum element is not already at the end of the subarray, flip the subarray arr[0:max_index].
- Flip the entire subarray arr[0:i] to move the element i to its correct position.
Step 4: Repeat Step 3 for the subarray arr[0:n-1], arr[0:n-2], ..., arr[0:1] until the entire array is sorted.
Implementation Of above approach:
C++
#include <bits/stdc++.h>
using namespace std;
// Reverses arr[0..i]
void flip(int arr[], int i)
{
int temp, start = 0;
while (start < i) {
temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Recursive function to sort the array using pancake sort
void pancakeSort(int arr[], int n)
{
// Base case: If the array is already sorted or has only
// one element, return
if (n == 1)
return;
// Find the index of the maximum element in the unsorted
// portion of the array
int mi = 0;
for (int i = 0; i < n; i++) {
if (arr[i] > arr[mi]) {
mi = i;
}
}
// Move the maximum element to the front of the array if
// it's not already there
if (mi != 0) {
flip(arr, mi);
}
// Flip the entire array to move the maximum element to
// its correct position
flip(arr, n - 1);
// Recursively sort the remaining unsorted portion of
// the array
pancakeSort(arr, n - 1);
}
// Driver program to test above function
int main()
{
int arr[] = { 23, 10, 20, 11, 12, 6, 7 };
int n = sizeof(arr) / sizeof(arr[0]);
pancakeSort(arr, n);
cout << "Sorted Array: ";
for (int i = 0; i < n; i++) {
cout << arr[i] << " ";
}
cout << endl;
return 0;
}
Java
import java.util.*;
public class PancakeSort {
// Reverses arr[0..i]
static void flip(int arr[], int i)
{
int temp, start = 0;
while (start < i) {
temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Recursive function to sort the array using pancake
// sort
static void pancakeSort(int arr[], int n)
{
// Base case: If the array is already sorted or has
// only one element, return
if (n == 1)
return;
// Find the index of the maximum element in the
// unsorted portion of the array
int mi = 0;
for (int i = 0; i < n; i++) {
if (arr[i] > arr[mi]) {
mi = i;
}
}
// Move the maximum element to the front of the
// array if it's not already there
if (mi != 0) {
flip(arr, mi);
}
// Flip the entire array to move the maximum element
// to its correct position
flip(arr, n - 1);
// Recursively sort the remaining unsorted portion
// of the array
pancakeSort(arr, n - 1);
}
// Driver program to test above function
public static void main(String args[])
{
int arr[] = { 23, 10, 20, 11, 12, 6, 7 };
int n = arr.length;
pancakeSort(arr, n);
System.out.print("Sorted Array: ");
for (int i = 0; i < n; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
}
// Contributed by sdeadityasharma
Python3
# Python code addition
# Reverses arr[0..i]
def flip(arr, i):
start = 0
while start < i:
temp = arr[start]
arr[start] = arr[i]
arr[i] = temp
start += 1
i -= 1
# Recursive function to sort the array using pancake sort
def pancakeSort(arr, n):
# Base case: If the array is already sorted or has only
# one element, return
if n == 1:
return
# Find the index of the maximum element in the unsorted
# portion of the array
mi = 0
for i in range(n):
if arr[i] > arr[mi]:
mi = i
# Move the maximum element to the front of the array if
# it's not already there
if mi != 0:
flip(arr, mi)
# Flip the entire array to move the maximum element to
# its correct position
flip(arr, n - 1)
# Recursively sort the remaining unsorted portion of
# the array
pancakeSort(arr, n - 1)
# Driver program to test above function
arr = [23, 10, 20, 11, 12, 6, 7]
n = len(arr)
pancakeSort(arr, n)
print("Sorted Array:", end=" ")
for i in range(n):
print(arr[i], end=" ")
print()
# The code is contributed by Nidhi goel.
C#
using System;
class Program {
// Reverses arr[0..i]
static void Flip(int[] arr, int i)
{
int temp, start = 0;
while (start < i) {
temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Recursive function to sort the array using pancake
// sort
static void PancakeSort(int[] arr, int n)
{
// Base case: If the array is already sorted or has
// only one element, return
if (n == 1)
return;
// Find the index of the maximum element in the
// unsorted portion of the array
int mi = 0;
for (int i = 0; i < n; i++) {
if (arr[i] > arr[mi]) {
mi = i;
}
}
// Move the maximum element to the front of the
// array if it's not already there
if (mi != 0) {
Flip(arr, mi);
}
// Flip the entire array to move the maximum element
// to its correct position
Flip(arr, n - 1);
// Recursively sort the remaining unsorted portion
// of the array
PancakeSort(arr, n - 1);
}
// Driver program to test above function
static void Main()
{
int[] arr = { 23, 10, 20, 11, 12, 6, 7 };
int n = arr.Length;
PancakeSort(arr, n);
Console.Write("Sorted Array: ");
for (int i = 0; i < n; i++) {
Console.Write(arr[i] + " ");
}
Console.WriteLine();
}
}
// This code is contributed by sarojmcy2e
JavaScript
// Reverses arr[0..i]
function flip(arr, i) {
let start = 0;
while (start < i) {
let temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Recursive function to sort the array using pancake sort
function pancakeSort(arr, n) {
if (n === 1) {
// Base case: If the array is already sorted or has only one element, return
return;
}
// Find the index of the maximum element in the unsorted portion of the array
let mi = 0;
for (let i = 0; i < n; i++) {
if (arr[i] > arr[mi]) {
mi = i;
}
}
// Move the maximum element to the front of the array if it's not already there
if (mi !== 0) {
flip(arr, mi);
}
// Flip the entire array to move the maximum element to its correct position
flip(arr, n - 1);
// Recursively sort the remaining unsorted portion of the array
pancakeSort(arr, n - 1);
}
let arr = [23, 10, 20, 11, 12, 6, 7];
let n = arr.length;
pancakeSort(arr, n);
console.log("Sorted Array: " + arr.join(" "));
// This code is contributed by shiv1o43g
OutputSorted Array: 6 7 10 11 12 20 23
Complexity Analysis:
- The time complexity of pancake sort is O(n2), where n is the size of the input array. The worst case occurs when the input array is reverse sorted.
- The space complexity is O(1) since the sorting is done in-place.
References:
https://en.wikipedia.org/wiki/Pancake_sorting
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem