numpy.true_divide() in Python
Last Updated :
29 Nov, 2018
(arr1, arr22, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, ufunc 'true_divide') :
Array element from first array is divided by the elements from second array(all happens element-wise). Both arr1 and arr2 must have same shape. Returns true division element-wise.
Python traditionally follow 'floor division'. Regardless of input type, true division adjusts answer to its best.
"//" is floor division operator.
"/" is true division operator.
Parameters :
arr1 : [array_like]Input array or object which works as numerator.
arr2 : [array_like]Input array or object which works as denominator.
out : [ndarray, None, optional]Output array with same dimensions as Input array,
placed with result.
**kwargs : allows you to pass keyword variable length of argument to a function.
It is used when we want to handle named argument in a function.
where : [array_like, optional]True value means to calculate the universal
functions(ufunc) at that position, False value means to leave the
value in the output alone.
Return :
If inputs are scalar then scalar; otherwise array with arr1 / arr2(element- wise)
i.e. true division
Code 1 : arr1 divided by arr2
Python
# Python program explaining
# true_divide() function
import numpy as np
# input_array
arr1 = [6, 7, 2, 9, 1]
arr2 = [2, 3, 4, 5, 6]
print ("arr1 : ", arr1)
print ("arr1 : ", arr2)
# output_array
out = np.true_divide(arr1, arr2)
print ("\nOutput array : \n", out)
Output :
arr1 : [6, 7, 2, 9, 1]
arr1 : [2, 3, 4, 5, 6]
Output array :
[ 3. 2.33333333 0.5 1.8 0.16666667]
Code 2 : elements of arr1 divided by divisor
Python
# Python program explaining
# true_divide() function
import numpy as np
# input_array
arr1 = [2, 7, 3, 11, 4]
divisor = 3
print ("arr1 : ", arr1)
# output_array
out = np.true_divide(arr1, divisor)
print ("\nOutput array : ", out)
Output :
arr1 : [2, 7, 3, 11, 4]
Output array : [ 0.66666667 2.33333333 1. 3.66666667 1.33333333]
Code 3 : Comparison between floor_division(//) and true-division(/)
Python
# Python program explaining
# true_divide() function
import numpy as np
# input_array
arr1 = np.arange(5)
arr2 = [2, 3, 4, 5, 6]
print ("arr1 : ", arr1)
print ("arr1 : ", arr2)
# output_array
out = np.floor_divide(arr1, arr2)
out_arr = np.true_divide(arr1, arr2)
print ("\nOutput array with floor divide : \n", out)
print ("\nOutput array with true divide : \n", out_arr)
print ("\nOutput array with floor divide(//) : \n", arr1//arr2)
print ("\nOutput array with true divide(/) : \n", arr1/arr2)
Output :
arr1 : [0 1 2 3 4]
arr1 : [2, 3, 4, 5, 6]
Output array with floor divide :
[0 0 0 0 0]
Output array with true divide :
[ 0. 0.33333333 0.5 0.6 0.66666667]
Output array with floor divide(//) :
[0 0 0 0 0]
Output array with true divide(/) :
[ 0. 0.33333333 0.5 0.6 0.66666667]
References :
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.floor_divide.html
.
Similar Reads
numpy.divide() in Python numpy.divide(arr1, arr2, out = None, where = True, casting = 'same_kind', order = 'K', dtype = None) : Array element from first array is divided by elements from second element (all happens element-wise). Both arr1 and arr2 must have same shape and element in arr2 must not be zero; otherwise it will
3 min read
numpy.floor_divide() in Python numpy.floor_divide(arr1, arr2, /, out = None, where = True, casting = 'same_kind', order = 'K', dtype = None) : Array element from first array is divided by the elements from second array(all happens element-wise). Both arr1 and arr2 must have same shape. It is equivalent to the Python // operator a
3 min read
numpy.gcd() in Python numpy.gcd(arr1, arr2, out = None, where = True, casting = âsame_kindâ, order = âKâ, dtype = None) : This mathematical function helps user to calculate GCD value of |arr1| and |arr2| elements. Greatest Common Divisor (GCD) of two or more numbers, which are not all zero, is the largest positive number
2 min read
numpy.binary_repr() in Python numpy.binary_repr(number, width=None) function is used to represent binary form of the input number as a string. For negative numbers, if width is not given, a minus sign is added to the front. If width is given, the twoâs complement of the number is returned, with respect to that width. In a twoâs-
3 min read
numpy.isnan() in Python The numpy.isnan() function tests element-wise whether it is NaN or not and returns the result as a boolean array. Syntax :Â numpy.isnan(array [, out]) Parameters :Â array : [array_like]Input array or object whose elements, we need to test for infinity out : [ndarray, optional]Output array placed wit
2 min read
numpy.isneginf() in Python The numpy.isneginf() function tests element-wise whether it is negative infinity or not, and returns the result as a boolean array. Syntax :  numpy.isneginf(array, y = None) Parameters : array : [array_like]Input array or object whose elements, we need to test for infinity. y : [array_like]A boole
2 min read
numpy.isinf() in Python The numpy.isinf() function tests element-wise whether it is +ve or -ve infinity or not return the result as a boolean array. Syntax: numpy.isinf(array [, out]) Parameters :  array : [array_like]Input array or object whose elements, we need to test for infinity out : [ndarray, optional]Output array
2 min read
numpy.all() in Python The numpy.all() function tests whether all array elements along the mentioned axis evaluate to True. Syntax: numpy.all(array, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters :Â array :[array_like]Input array or object whose elements, we need to test. axis
3 min read
numpy.any() in Python The numpy.any() function tests whether any array elements along the mentioned axis evaluate to True. Syntax :Â numpy.any(a, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters :Â array :[array_like]Input array or object whose elements, we need to test. axis :
3 min read
Python | Numpy numpy.ndarray.__truediv__() With the help of Numpy numpy.ndarray.__truediv__(), we can divide a particular value that is provided as a parameter in the ndarray.__truediv__() method. Value will be divided to each and every element in a numpy array. Syntax: ndarray.__truediv__($self, value, /) Return: self/value Example #1 : In
1 min read