Numpy recarray.argsort() function | Python Last Updated : 23 Apr, 2019 Comments Improve Suggest changes Like Article Like Report In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is [(a, int), (b, float)], where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as arr['a'] and arr['b']. Record arrays allow the fields to be accessed as members of the array, using arr.a and arr.b. numpy.recarray.argsort() function returns the indices that would sort this array. Syntax : numpy.recarray.argsort(arr, axis=-1, kind='quicksort', order=None) Parameters: arr : Input Record array. axis : [int or None] Axis along which to sort. If None, the array is flattened before sorting. The default is -1, which sorts along the last axis. kind : [‘quicksort’, ‘mergesort’, ‘heapsort’]Selection algorithm. Default is ‘quicksort’. order : [str or list of str] When arr is an array with fields defined, this argument specifies which fields to compare first, second, etc. Return : [index_array, ndarray] Array of indices that sort arr along the specified axis. Code #1 : Python3 # Python program explaining # numpy.recarray.argsort() method # importing numpy as geek import numpy as geek # creating input array with 2 different field in_arr = geek.array([[(5.0, 2), (3.0, -4), (6.0, 9)], [(9.0, 1), (5.0, 4), (-12.0, -7)]], dtype =[('a', float), ('b', int)]) print ("Input array : ", in_arr) # convert it to a record array, # using arr.view(np.recarray) rec_arr = in_arr.view(geek.recarray) print("Record array of float: ", rec_arr.a) print("Record array of int: ", rec_arr.b) # applying recarray.argsort methods # to float record array along axis 1 out_arr = geek.recarray.argsort(rec_arr.a, axis = 1) print ("Output sorted array indices along axis 1: ", out_arr) # applying recarray.argsort methods to # int record array along axis 0 out_arr = geek.recarray.argsort(rec_arr.b, axis = 0) print ("Output sorted array indices array along axis 0: ", out_arr) Output: Input array : [[(5.0, 2) (3.0, -4) (6.0, 9)] [(9.0, 1) (5.0, 4) (-12.0, -7)]] Record array of float: [[ 5. 3. 6.] [ 9. 5. -12.]] Record array of int: [[ 2 -4 9] [ 1 4 -7]] Output sorted array indices along axis 1: [[1 0 2] [2 1 0]] Output sorted array indices array along axis 0: [[1 0 1] [0 1 0]] Code #2 : We are applying numpy.recarray.argsort() to whole record array. Python3 # Python program explaining # numpy.recarray.argsort() method # importing numpy as geek import numpy as geek # creating input array with 2 different field in_arr = geek.array([[(5.0, 2), (3.0, 4), (6.0, -7)], [(9.0, 1), (6.0, 4), (-2.0, -7)]], dtype =[('a', float), ('b', int)]) print ("Input array : ", in_arr) # convert it to a record array, # using arr.view(np.recarray) rec_arr = in_arr.view(geek.recarray) # applying recarray.argsort methods to record array out_arr = geek.recarray.argsort(rec_arr, kind ='heapsort') print ("Output array : ", out_arr) Output: Input array : [[(5.0, 2) (3.0, 4) (6.0, -7)] [(9.0, 1) (6.0, 4) (-2.0, -7)]] Output sorted array indices : [[1 0 2] [2 1 0]] Comment More infoAdvertise with us Next Article Numpy recarray.argsort() function | Python jana_sayantan Follow Improve Article Tags : Python Python-numpy Python numpy-arrayManipulation Practice Tags : python Similar Reads Numpy recarray.argpartition() function | Python In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is [(a, int), (b, float)], where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as arr['a'] and arr['b']. Record array 3 min read Numpy recarray.flatten() function | Python In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is [(a, int), (b, float)], where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as arr['a'] and arr['b']. Record array 3 min read Numpy recarray.put() function | Python In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is [(a, int), (b, float)], where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as arr['a'] and arr['b']. Record array 3 min read Numpy recarray.byteswap() function | Python In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is [(a, int), (b, float)], where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as arr['a'] and arr['b']. Record array 2 min read Numpy recarray.ravel() function | Python In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is [(a, int), (b, float)], where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as arr['a'] and arr['b']. Record array 3 min read Numpy recarray.tobytes() function | Python In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is [(a, int), (b, float)], where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as arr['a'] and arr['b']. Record array 3 min read Numpy recarray.nonzero() function | Python In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is [(a, int), (b, float)], where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as arr['a'] and arr['b']. Record array 3 min read Numpy recarray.tostring() function | Python In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is [(a, int), (b, float)], where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as arr['a'] and arr['b']. Record array 3 min read Numpy recarray.partition() function | Python In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is [(a, int), (b, float)], where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as arr['a'] and arr['b']. Record array 3 min read numpy.argsort() in Python numpy.argsort() is a function in NumPy that returns the indices that would sort an array. In other words, it gives you the indices that you would use to reorder the elements in an array to be in sorted order. Example: Pythonimport numpy as np a = np.array([2, 0, 1, 5, 4, 1, 9]) idx = np.argsort(a) p 3 min read Like