numpy.ravel_multi_index() function | Python
Last Updated :
22 Apr, 2020
Improve
numpy.ravel_multi_index()
function converts a tuple of index arrays into an array of flat indices, applying boundary modes to the multi-index.
Syntax : numpy.ravel_multi_index(multi_index, dims, mode = 'raise', order = 'C) Parameters : multi_index : [tuple of array_like] A tuple of integer arrays, one array for each dimension. dims : [tuple of ints] The shape of array into which the indices from multi_index apply. mode : [{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices are handled. Can specify either one mode or a tuple of modes, one mode per index. ‘raise’ – raise an error (default) ‘wrap’ – wrap around ‘clip’ – clip to the range In ‘clip’ mode, a negative index that would normally wrap will clip to 0 instead. order : [{‘C’, ‘F’}, optional] Determines whether the multi-index should be viewed as indexing in row-major (C-style) or column-major (Fortran-style) order. Return : [ndarray] An array of indices into the flattened version of an array of dimensions dims.Code #1 :
# Python program explaining
# numpy.ravel_multi_index() function
# importing numpy as geek
import numpy as geek
arr = geek.array([[3, 6, 6], [4, 5, 1]])
gfg = geek.ravel_multi_index(arr, (7, 6))
print(gfg)
# Python program explaining
# numpy.ravel_multi_index() function
# importing numpy as geek
import numpy as geek
arr = geek.array([[3, 6, 6], [4, 5, 1]])
gfg = geek.ravel_multi_index(arr, (7, 6))
print(gfg)
[22 41 37]Code #2 :
# Python program explaining
# numpy.ravel_multi_index() function
# importing numpy as geek
import numpy as geek
arr = geek.array([[3, 6, 6], [4, 5, 1]])
gfg = geek.ravel_multi_index(arr, (7, 6), order = 'F')
print(gfg)
# Python program explaining
# numpy.ravel_multi_index() function
# importing numpy as geek
import numpy as geek
arr = geek.array([[3, 6, 6], [4, 5, 1]])
gfg = geek.ravel_multi_index(arr, (7, 6), order = 'F')
print(gfg)
[31 41 13]Code #3 :
# Python program explaining
# numpy.ravel_multi_index() function
# importing numpy as geek
import numpy as geek
arr = geek.array([[3, 6, 6], [4, 5, 1]])
gfg = geek.ravel_multi_index(arr, (7, 6), mode = 'clip')
print(gfg)
# Python program explaining
# numpy.ravel_multi_index() function
# importing numpy as geek
import numpy as geek
arr = geek.array([[3, 6, 6], [4, 5, 1]])
gfg = geek.ravel_multi_index(arr, (7, 6), mode = 'clip')
print(gfg)
[22 41 37]