numpy.random.standard_normal() in Python Last Updated : 18 Aug, 2020 Summarize Comments Improve Suggest changes Share Like Article Like Report With the help of numpy.random.standard_normal() method, we can get the random samples from standard normal distribution and return the random samples as numpy array by using this method. Syntax : numpy.random.standard_normal(size=None) Return : Return the random samples as numpy array. Example #1 : In this example we can see that by using numpy.random.standard_normal() method, we are able to get the random samples of standard normal distribution. Python3 # import numpy import numpy as np import matplotlib.pyplot as plt # Using standard_normal() method gfg = np.random.standard_normal(5000) plt.hist(gfg, bins = 50, density = True) plt.show() Output : Example #2 : Python3 # import numpy import numpy as np import matplotlib.pyplot as plt # Using standard_normal() method gfg = np.random.standard_normal(10000) plt.hist(gfg, bins = 100, density = True) plt.show() Output : Comment More infoAdvertise with us Next Article numpy.random.standard_normal() in Python J jitender_1998 Follow Improve Article Tags : Python Python-numpy Python numpy-Random Practice Tags : python Similar Reads numpy.random.standard_t() in Python With the help of numpy.random.standard_t() method, we can get the random samples from standard T distribution having degree of freedom and return the random samples by using this method. Standard T distribution Syntax : numpy.random.standard_t(df, size=None) # Here df is degree of freedom. Return : 1 min read numpy.random.standard_gamma() in Python With the help of numpy.random.standard_gamma() method, we can get the random samples from standard gamma distribution and return the random samples by using this method. Standard gamma distribution Syntax : numpy.random.standard_gamma(shape, size=None) Return : Return the random samples as numpy arr 1 min read numpy.random.standard_exponential() in Python With the help of numpy.random.standard_exponential() method, we can get the random samples of standard exponential distribution and return the random samples. Syntax : numpy.random.standard_exponential(size=None) Return : Return the random samples as numpy array. Example #1 : In this example we can 1 min read rand vs normal in Numpy.random in Python In this article, we will look into the principal difference between the Numpy.random.rand() method and the Numpy.random.normal() method in detail. About random: For random we are taking .rand() numpy.random.rand(d0, d1, ..., dn) : creates an array of specified shape and fills it with random values. 3 min read numpy.random.wald() in Python With the help of numpy.random.wald() method, we can get the random samples from Wald or Inverse Gaussian distribution and return the random samples as numpy array by using this method. Inverse Gaussian distribution Syntax : numpy.random.wald(mean, scale, size=None) Return : Return the random samples 1 min read Like