Exponential Distribution in NumPy Last Updated : 23 Apr, 2025 Comments Improve Suggest changes Like Article Like Report The Exponential Distribution is a fundamental concept in probability and statistics. It describe the time between events in a Poisson process where events occur continuously and independently at a constant average rate. You can generate random numbers which follow exponential Distribution using numpy.random.exponential() method.Syntax : numpy.random.exponential(scale=1.0, size=None)scale : The inverse of the rate parameter (β=1/λ) which determines the spread of the distribution.size : The shape of the returned array.Example 1: Generate a Single Random NumberTo generate a single random number from a default Exponential Distribution (scale=1): Python import numpy as np random_number = np.random.exponential() print(random_number) Output:0.008319485004465102To generate multiple random numbers: Python random_numbers = np.random.exponential(size=5) print(random_numbers) Output:[1.15900802 0.1997201 0.73995988 0.19688073 0.54198053]Visualizing the Exponential DistributionVisualizing the generated numbers helps in understanding their behavior. Below is an example of plotting a histogram of random numbers generated using numpy.random.exponential. Python import numpy as np import matplotlib.pyplot as plt import seaborn as sns scale = 2 size = 1000 data = np.random.exponential(scale=scale, size=size) sns.histplot(data, bins=30, kde=True, color='orange', edgecolor='black') plt.title(f"Exponential Distribution (Scale={scale})") plt.xlabel("Value") plt.ylabel("Frequency") plt.grid(True) plt.show() Output:Exponential DistributionThe above image shows an Exponential Distribution with a scale parameter of 2. The histogram represents simulated data while the orange curve depicts the theoretical distribution. Comment More info J jitender_1998 Follow Improve Article Tags : Python Python-numpy Python numpy-Random Explore Python FundamentalsPython Introduction 3 min read Input and Output in Python 4 min read Python Variables 5 min read Python Operators 5 min read Python Keywords 2 min read Python Data Types 8 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 7 min read Python Functions 5 min read Recursion in Python 6 min read Python Lambda Functions 5 min read Python Data StructuresPython String 5 min read Python Lists 5 min read Python Tuples 4 min read Python Dictionary 3 min read Python Sets 6 min read Python Arrays 7 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 11 min read Python Exception Handling 5 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 2 min read Python MySQL 9 min read Python Packages 12 min read Python Modules 7 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 3 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 6 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 15+ min read StatsModel Library- Tutorial 4 min read Learning Model Building in Scikit-learn 8 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 7 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 7 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 7 min read Python | Build a REST API using Flask 3 min read How to Create a basic API using Django Rest Framework ? 4 min read Python PracticePython Quiz 3 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like