numpy.polyint() in Python Last Updated : 29 Nov, 2018 Summarize Comments Improve Suggest changes Share Like Article Like Report numpy.polyint(p, m) : Evaluates the anti - derivative of a polynomial with the specified order. m antiderivative 'P' of polynomial 'p' satisfies Parameters : p : [array_like or poly1D] polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True then array values are the roots of the polynomial equation. For example, poly1d(3, 2, 6) = 3x2 + 2x + 6 m : [int, optional] Order of anti-derivative. Default is 1. Return: Anti-Derivative of the polynomial. Code #1: Python3 1== # Python code explaining # numpy.polyint() # importing libraries import numpy as np # Constructing polynomial p1 = np.poly1d([1, 2]) p2 = np.poly1d([4, 9, 5, 4]) print ("P1 : ", p1) print ("\n p2 : \n", p2) # Solve for x = 2 print ("\n\np1 at x = 2 : ", p1(2)) print ("p2 at x = 2 : ", p2(2)) a = np.polyint(p1, 1) b = np.polyint(p2, 1) print ("\n\nUsing polyint") print ("p1 anti-derivative of order = 1 : \n", a) print ("p2 anti-derivative of order = 1 : \n", b) a = np.polyint(p1, 2) b = np.polyint(p2, 2) print ("\n\nUsing polyint") print ("p1 anti-derivative of order = 2 : \n", a) print ("p2 anti-derivative of order = 2 : \n", b) Output : P1 : 1 x + 2 p2 : 3 2 4 x + 9 x + 5 x + 4 p1 at x = 2 : 4 p2 at x = 2 : 82 Using polyint p1 anti-derivative of order = 1 : 2 0.5 x + 2 x p2 anti-derivative of order = 1 : 4 3 2 1 x + 3 x + 2.5 x + 4 x Code #2: Python3 1== # Python code explaining # numpy.polyint() # importing libraries import numpy as np # Constructing polynomial p1 = np.poly1d([1, 2]) p2 = np.poly1d([4, 9, 5, 4]) a = np.polyint(p1, 2) b = np.polyint(p2, 2) print ("\n\nUsing polyint") print ("p1 anti-derivative of order = 2 : \n", a) print ("p2 anti-derivative of order = 2 : \n", b) Output : Using polyint p1 anti-derivative of order = 2 : 3 2 0.1667 x + 1 x p2 anti-derivative of order = 2 : 5 4 3 2 0.2 x + 0.75 x + 0.8333 x + 2 x Comment More infoAdvertise with us Next Article numpy.polyval() in Python M mohit gupta_omg :) Follow Improve Article Tags : Python Python-numpy Python numpy-polynomials Practice Tags : python Similar Reads numpy.poly() in Python The numpy.poly() function in the Sequence of roots of the polynomial returns the coefficient of the polynomial. Syntax :numpy.poly(seq) Parameters : Seq : sequence of roots of the polynomial roots, or a matrix of roots. Return: 1D array having coefficients of the polynomial from the highest degree t 2 min read numpy.polydiv() in Python The numpy.polydiv() method evaluates the division of two polynomials and returns the quotient and remainder of the polynomial division. Syntax : numpy.polydiv(p1, p2) Parameters : p1 : [array_like or poly1D]Coefficients of dividend polynomial. p2 : [array_like or poly1D]Coefficients of divisor polyn 1 min read numpy.poly1d() in Python The numpy.poly1d() function helps to define a polynomial function. It makes it easy to apply "natural operations" on polynomials. Syntax: numpy.poly1d(arr, root, var) Parameters : arr : [array_like] The polynomial coefficients are given in decreasing order of powers. If the second parameter (root) i 3 min read numpy.polyval() in Python numpy.polyval(p, x) method evaluates a polynomial at specific values. If 'N' is the length of polynomial 'p', then this function returns the value Parameters : p : [array_like or poly1D] polynomial coefficients are given in decreasing order of powers. If the second parameter (root) is set to True th 2 min read numpy.polymul() in Python The numpy.polymul() method evaluates the product of two polynomials and returns the polynomial resulting from the multiplication of two input polynomials 'p1' and 'p2'. Syntax : numpy.polymul(p1, p2) Parameters : p1 : [array_like or poly1D]Input polynomial 1. p2 : [array_like or poly1D]Input polynom 1 min read numpy.polyadd() in Python numpy.polyadd() : This function helps to find the sum of two polynomials and then returning the result as a polynomial. Each input polynomial must be a sequence of polynomial coefficients, from highest to lowest degree. Parameters : p1 : Input polynomial 1 p2 : Input polynomial 2 Return : Sum of pol 1 min read Like