numpy.nanpercentile() in Python
Last Updated :
09 Aug, 2022
numpy.nanpercentile()function used to compute the nth percentile of the given data (array elements) along the specified axis and ignores nan values.
Syntax :
numpy.nanpercentile(arr, q, axis=None, out=None)
Parameters :
- arr :input array.
- q : percentile value.
- axis :axis along which we want to calculate the percentile value.Otherwise, it will consider arr to be flattened(works on all the axis). axis = 0 means along the column and axis = 1 means working along the row.
- out : Different array in which we want to place the result. The array must have same dimensions as expected output.
Return :Percentile of the array (a scalar value if axis is none) or array with percentiles of values along specified axis.
Code #1 : Working
Python
# Python Program illustrating
# numpy.nanpercentile() method
import numpy as np
# 1D array
arr = [20, 2, 7, np.nan, 34]
print("arr : ", arr)
print("50th percentile of arr : ",
np.percentile(arr, 50))
print("25th percentile of arr : ",
np.percentile(arr, 25))
print("75th percentile of arr : ",
np.percentile(arr, 75))
print("\n50th percentile of arr : ",
np.nanpercentile(arr, 50))
print("25th percentile of arr : ",
np.nanpercentile(arr, 25))
print("75th percentile of arr : ",
np.nanpercentile(arr, 75))
Output :
arr : [20, 2, 7, nan, 34]
50th percentile of arr : nan
25th percentile of arr : nan
75th percentile of arr : nan
50th percentile of arr : 13.5
25th percentile of arr : 5.75
75th percentile of arr : 23.5
Code #2 :
Python
# Python Program illustrating
# numpy.nanpercentile() method
import numpy as np
# 2D array
arr = [[14, np.nan, 12, 33, 44],
[15, np.nan, 27, 8, 19],
[23, 2, np.nan, 1, 4, ]]
print(& quot
\narr: \n"
, arr)
# Percentile of the flattened array
print(& quot
\n50th Percentile of arr, axis = None : & quot
,
np.percentile(arr, 50))
print(& quot
\n50th Percentile of arr, axis = None : & quot
,
np.nanpercentile(arr, 50))
print(& quot
0th Percentile of arr, axis = None : & quot
,
np.nanpercentile(arr, 0))
# Percentile along the axis = 0
print(& quot
\n50th Percentile of arr, axis = 0 : & quot
,
np.nanpercentile(arr, 50, axis=0))
print(& quot
0th Percentile of arr, axis = 0 : & quot
,
np.nanpercentile(arr, 0, axis=0))
# Percentile along the axis = 1
print(& quot
\n50th Percentile of arr, axis = 1 : & quot
,
np.nanpercentile(arr, 50, axis=1))
print(& quot
0th Percentile of arr, axis = 1 : & quot
,
np.nanpercentile(arr, 0, axis=1))
print(& quot
\n0th Percentile of arr, axis = 1: \n"
,
np.nanpercentile(arr, 50, axis=1, keepdims=True))
print(& quot
\n0th Percentile of arr, axis = 1: \n"
,
np.nanpercentile(arr, 0, axis=1, keepdims=True))
Output :
arr :
[[14, nan, 12, 33, 44], [15, nan, 27, 8, 19], [23, 2, nan, 1, 4]]
50th Percentile of arr, axis = None : nan
50th Percentile of arr, axis = None : 14.5
0th Percentile of arr, axis = None : 1.0
50th Percentile of arr, axis = 0 : [15. 2. 19.5 8. 19. ]
0th Percentile of arr, axis = 0 : [14. 2. 12. 1. 4.]
50th Percentile of arr, axis = 1 : [23.5 17. 3. ]
0th Percentile of arr, axis = 1 : [12. 8. 1.]
0th Percentile of arr, axis = 1 :
[[23.5]
[17. ]
[ 3. ]]
0th Percentile of arr, axis = 1 :
[[12.]
[ 8.]
[ 1.]]
Code #3:
Python
# Python Program illustrating
# numpy.nanpercentile() method
import numpy as np
# 2D array
arr = [[14, np.nan, 12, 33, 44],
[15, np.nan, 27, 8, 19],
[23, np.nan, np.nan, 1, 4, ]]
print(& quot
\narr: \n"
, arr)
# Percentile along the axis = 1
print(& quot
\n50th Percentile of arr, axis = 1 : & quot
,
np.nanpercentile(arr, 50, axis=1))
print(& quot
\n50th Percentile of arr, axis = 0 : & quot
,
np.nanpercentile(arr, 50, axis=0))
Output :
arr :
[[14, nan, 12, 33, 44], [15, nan, 27, 8, 19], [23, nan, nan, 1, 4]]
50th Percentile of arr, axis = 1 : [23.5 17. 4. ]
50th Percentile of arr, axis = 0 : [15. nan 19.5 8. 19. ]
RuntimeWarning: All-NaN slice encountered
overwrite_input, interpolation)
Similar Reads
numpy.nanquantile() in Python numpy.nanquantile(arr, q, axis = None) : Compute the qth quantile of the given data (array elements) along the specified axis, ignoring the nan values. Quantiles plays a very important role in statistics. In the figure given above, Q2 is the median and Q3 - Q1 represents the Interquartile Range of
4 min read
numpy.nanprod() in Python numpy.nanprod() function is used when we want to compute the product of array elements over a given axis treating NaNs as ones. One is returned for slices that are all-NaN or empty. Syntax : numpy.nanprod(arr, axis=None, dtype=None, out=None, keepdims='class numpy._globals._NoValue'). Parameters : a
2 min read
numpy.nanmin() in Python numpy.nanmin()function is used when to returns minimum value of an array or along any specific mentioned axis of the array, ignoring any Nan value. Syntax : numpy.nanmin(arr, axis=None, out=None) Parameters : arr :Input array. axis :Axis along which we want the min value. Otherwise, it will consider
2 min read
numpy.nanvar() in Python numpy.nanvar(arr, axis = None) : Compute the variance of the given data (array elements) along the specified axis(if any), while ignoring NaN values. Example : x = 1 1 1 1 1 Standard Deviation = 0 . Variance = 0 y = 9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4, 10, 9, 6, 9, 4 Step 1 : Mean of dist
3 min read
numpy.nanargmin() in Python The numpy.nanargmin() function returns indices of the min element of the array in a particular axis ignoring NaNs. The results cannot be trusted if a slice contains only NaNs and Infs. Syntax:  numpy.nanargmin(array, axis = None) Parameters : array : Input array to work on axis : [int, optional]A
2 min read