numpy.nanargmax() in Python Last Updated : 19 Sep, 2023 Comments Improve Suggest changes Like Article Like Report The numpy.nanargmax() function returns indices of the max element of the array in a particular axis ignoring NaNs. The results cannot be trusted if a slice contains only NaNs and Infs. Syntax: numpy.nanargmax(array, axis = None) Parameters : array : Input array to work on axis : [int, optional]Along a specified axis like 0 or 1 Return : Array of indices into the array with same shape as array.shape with the dimension along axis removed. Code 1 : Python # Python Program illustrating # working of nanargmax() import numpy as geek # Working on 1D array array = [geek.nan, 4, 2, 3, 1] print("INPUT ARRAY 1 : \n", array) array2 = geek.array([[geek.nan, 4], [1, 3]]) # returning Indices of the max element # as per the indices ingnoring NaN print("\nIndices of max in array1 : ", geek.nanargmax(array)) # Working on 2D array print("\nINPUT ARRAY 2 : \n", array2) print("\nIndices of max in array2 : ", geek.nanargmax(array2)) print("\nIndices at axis 1 of array2 : ", geek.nanargmax(array2, axis = 1)) Output : INPUT ARRAY 1 : [nan, 4, 2, 3, 1] Indices of max in array1 : 1 INPUT ARRAY 2 : [[ nan 4.] [ 1. 3.]] Indices of max in array2 : 1 Indices at axis 1 of array2 : [1 1] Code 2: Comparing working of argmax and nanargmax Python # Python Program illustrating # working of nanargmax() import numpy as geek # Working on 2D array array = ( [[ 8, 13, 5, 0], [ 16, geek.nan, 5, 3], [geek.nan, 7, 15, 15], [3, 11, 4, 12]]) print("INPUT ARRAY : \n", array) # returning Indices of the max element # as per the indices ''' [[ 8 13 5 0] [ 16 2 5 3] [10 7 15 15] [ 3 11 4 12]] ^ ^ ^ ^ ''' print("\nIndices of max using argmax : ", geek.argmax(array, axis = 0)) print("\nIndices of max using nanargmax : : ", geek.nanargmax(array, axis = 0)) Output : INPUT ARRAY : [[8, 13, 5, 0], [16, nan, 5, 3], [nan, 7, 15, 15], [3, 11, 4, 12]] Indices of max using argmax : [2 1 2 2] Indices of max using nanargmax : : [1 0 2 2] Note : These codes won't run on online IDE's. So please, run them on your systems to explore the working. Comment More infoAdvertise with us Next Article numpy.nanargmax() in Python M Mohit Gupta_OMG Improve Article Tags : Misc Python Python-numpy Python numpy-Sorting Searching Practice Tags : Miscpython Similar Reads numpy.nanargmin() in Python The numpy.nanargmin() function returns indices of the min element of the array in a particular axis ignoring NaNs. The results cannot be trusted if a slice contains only NaNs and Infs. Syntax:  numpy.nanargmin(array, axis = None) Parameters : array : Input array to work on axis : [int, optional]A 2 min read np.nanmax() in Python numpy.nanmax()function is used to returns maximum value of an array or along any specific mentioned axis of the array, ignoring any Nan value. Syntax : numpy.nanmax(arr, axis=None, out=None, keepdims = no value) Parameters : arr : Input array. axis : Axis along which we want the max value. Otherwise 2 min read numpy.nanmin() in Python numpy.nanmin()function is used when to returns minimum value of an array or along any specific mentioned axis of the array, ignoring any Nan value. Syntax : numpy.nanmin(arr, axis=None, out=None) Parameters : arr :Input array. axis :Axis along which we want the min value. Otherwise, it will consider 2 min read numpy.nansum() in Python numpy.nansum()function is used when we want to compute the sum of array elements over a given axis treating Not a Numbers (NaNs) as zero. Syntax : numpy.nansum(arr, axis=None, dtype=None, out=None, keepdims='no value') Parameters : arr : [array_like] Array containing numbers whose sum is desired. If 3 min read numpy.nanprod() in Python numpy.nanprod() function is used when we want to compute the product of array elements over a given axis treating NaNs as ones. One is returned for slices that are all-NaN or empty. Syntax : numpy.nanprod(arr, axis=None, dtype=None, out=None, keepdims='class numpy._globals._NoValue'). Parameters : a 2 min read numpy.isnan() in Python The numpy.isnan() function tests element-wise whether it is NaN or not and returns the result as a boolean array. Syntax : numpy.isnan(array [, out]) Parameters : array : [array_like]Input array or object whose elements, we need to test for infinity out : [ndarray, optional]Output array placed wit 2 min read numpy.argmax() in Python The numpy.argmax() function returns indices of the max element of the array in a particular axis. Syntax : numpy.argmax(array, axis = None, out = None) Parameters : array : Input array to work on axis : [int, optional]Along a specified axis like 0 or 1 out : [array optional]Provides a feature to ins 3 min read numpy.nancumsum() in Python numpy.nancumsum() function is used when we want to compute the cumulative sum of array elements over a given axis treating Not a Numbers (NaNs) as zero. The cumulative sum does not change when NaNs are encountered and leading NaNs are replaced by zeros. Zeros are returned for slices that are all-NaN 3 min read numpy.maximum() in Python numpy.maximum() function is used to find the element-wise maximum of array elements. It compares two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. 2 min read numpy.nan_to_num() in Python numpy.nan_to_num() function is used when we want to replace nan(Not A Number) with zero and inf with finite numbers in an array. It returns (positive) infinity with a very large number and negative infinity with a very small (or negative) number. Syntax : numpy.nan_to_num(arr, copy=True) Parameters 2 min read Like