numpy.matlib.empty() function | Python Last Updated : 22 Apr, 2020 Comments Improve Suggest changes Like Article Like Report numpy.matlib.empty() function return a new matrix of given shape and type, without initializing entries. Syntax : numpy.matlib.empty(shape, dtype = None, order = 'C') Parameters : shape : [int or tuple of int] Shape of the empty matrix. dtype : [data-type, optional] Desired output data-type. order : [{āCā, āFā}, optional] Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory. Return : [matrix] A new matrix of given shape and type, without initializing entries. Code #1 : Python3 # Python program explaining # numpy.matlib.empty() function # importing numpy as geek # and importing matlib module import numpy as geek import numpy.matlib # filled with random data gfg = geek.matlib.empty((2, 2)) # output will be random print (gfg) Output : [[ 6.91957648e-310 1.90383493e-316] [ 6.91957669e-310 5.30409905e-317]] Code #2 : Python3 # Python program explaining # numpy.matlib.empty() function # importing numpy as geek # and importing matlib module import numpy as geek import numpy.matlib # filled with random data gfg = geek.matlib.empty((2, 2), dtype = int) # output will be random print (gfg) Output : [[139855860099992 40294208] [139855825297024 10730496]] Comment More infoAdvertise with us Next Article numpy.matlib.empty() function | Python sanjoy_62 Follow Improve Article Tags : Machine Learning Python-numpy Python numpy-arrayManipulation python Python numpy-matlib +1 More Practice Tags : Machine Learningpython Similar Reads numpy.matrix.A() function - Python numpy.matrix.A() function return self as an ndarray object. Syntax : numpy.matrix.A() Parameters : None Return : [ndarray] Return self as an ndarray. Code #1 : Python3 # Python program explaining # numpy.matrix.A() function # importing numpy as geek import numpy as geek mat = geek.matrix(geek.arange 1 min read numpy matrix operations | empty() function numpy.matlib.empty() is another function for doing matrix operations in numpy.It returns a new matrix of given shape and type, without initializing entries. Syntax : numpy.matlib.empty(shape, dtype=None, order='C') Parameters : shape : [int or tuple of int] Shape of the desired output empty matrix. 1 min read numpy.matlib.zeros() function | Python numpy.matlib.zeros() function return matrix of given shape and type, filled with zeros. Syntax : numpy.matlib.zeros(shape, dtype = None, order = 'C') Parameters : shape : [sequence of ints] Shape of the empty matrix. dtype : [data-type, optional] The desired data-type for the matrix, default is floa 1 min read numpy.empty_like() in Python numpy.empty_like(a, dtype = None, order = 'K', subok = True) : Return a new array with the same shape and type as a given array. Parameters : shape : Number of rows order : C_contiguous or F_contiguous dtype : [optional, float(by Default)] Data type of returned array. subok : [bool, optional] to mak 1 min read numpy.ma.filled() function - Python numpy.ma.filled() function return input as an array with masked data replaced by a fill value. If arr is not a MaskedArray, arr itself is returned. If arr is a MaskedArray and fill_value is None, fill_value is set to arr.fill_value. Syntax : numpy.ma.filled(arr, fill_value = None) Parameters : arr : 1 min read numpy matrix operations | eye() function numpy.matlib.eye() is another function for doing matrix operations in numpy. It returns a matrix with ones on the diagonal and zeros elsewhere. Syntax : numpy.matlib.eye(n, M=None, k=0, dtype='float', order='C') Parameters : n : [int] Number of rows in the output matrix. M : [int, optional] Number o 2 min read numpy.empty() in Python numpy.empty(shape, dtype = float, order = 'C') : Return a new array of given shape and type, with random values. Parameters : -> shape : Number of rows -> order : C_contiguous or F_contiguous -> dtype : [optional, float(by Default)] Data type of returned array. Python # Python Programming i 1 min read numpy.ma.mask_cols() function | Python In thisnumpy.ma.mask_cols() function, mask columns of a 2D array that contain masked values. This function is a shortcut to mask_rowcols with axis equal to 1. Syntax : numpy.ma.mask_cols(arr, axis = None) Parameters : arr : [array_like, MaskedArray] The array to mask. axis : [int, optional] Axis alo 1 min read Numpy MaskedArray.any() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 3 min read numpy.ma.masked_all() function | Python numpy.ma.masked_all() function return an empty masked array of the given shape and dtype, where all the data are masked. Syntax : numpy.ma.masked_all(shape, dtype) Parameter : shape : [tuple] Shape of the required MaskedArray. dtype : [dtype, optional] Data type of the output. Return : [MaskedArray] 1 min read Like