Numpy MaskedArray.swapaxes() function | Python
Last Updated :
13 Oct, 2019
Improve
numpy.MaskedArray.swapaxes()
function is used to Return a view of the masked array with axis1 and axis2 interchanged.
Syntax : numpy.ma.swapaxes(axis1, axis2)
Parameters:
axis1 :[int] First axis.
axis2 : [int] Second axis.
Return : [ swapped_array] Resultant array.
Code #1 :
# Python program explaining
# numpy.MaskedArray.swapaxes() method
# importing numpy as geek
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
# creating input array
in_arr = geek.array([[1, 2], [ 3, -1], [ 5, -3]])
print ("Input array : ", in_arr)
# Now we are creating a masked array.
# by making entry as invalid.
mask_arr = ma.masked_array(in_arr, mask =[[ 1, 0], [ 0, 1], [ 0, 0]])
print ("Masked array : ", mask_arr)
# applying MaskedArray.swapaxes methods
# to masked array
out_arr = mask_arr.swapaxes(0, 1)
print ("Output swapped masked array : ", out_arr)
Output:
Code #2 :
Input array : [[ 1 2] [ 3 -1] [ 5 -3]] Masked array : [[-- 2] [3 --] [5 -3]] Output swapped masked array : [[-- 3 5] [2 -- -3]]
# Python program explaining
# numpy.MaskedArray.swapaxes() method
# importing numpy as geek
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
# creating input array
in_arr = geek.array([[[ 2e8, 3e-5]], [[ -45.0, 2e5]]])
print ("Input array : ", in_arr)
# Now we are creating a masked array.
# by making one entry as invalid.
mask_arr = ma.masked_array(in_arr, mask =[[[ 1, 0]], [[ 0, 0]]])
print ("3D Masked array : ", mask_arr)
# applying MaskedArray.swapaxes methods
# to masked array
out_arr = mask_arr.swapaxes(0, 2)
print ("Output swapped masked array : ", out_arr)
Output:
Input array : [[[ 2.0e+08 3.0e-05]] [[-4.5e+01 2.0e+05]]] 3D Masked array : [[[-- 3e-05]] [[-45.0 200000.0]]] Output swapped masked array : [[[-- -45.0]] [[3e-05 200000.0]]]