Numpy MaskedArray.ravel() function | Python Last Updated : 03 Oct, 2019 Comments Improve Suggest changes Like Article Like Report numpy.MaskedArray.ravel() function is used to return a 1D version of self mask array, as a view. Syntax : numpy.ma.ravel(self, order='C') Parameters: order : [‘C’, ‘F’, ‘A’, ‘K’, optional] By default, ‘C’ index order is used. --> The elements of a are read using this index order. --> ‘C’ means to index the elements in C-like order, with the last axis index changing fastest, back to the first axis index changing slowest. --> ‘F’ means to index the elements in Fortran-like index order, with the first index changing fastest, and the last index changing slowest. --> ‘A’ means to read the elements in Fortran-like index order if m is Fortran contiguous in memory, C-like order otherwise. --> ‘K’ means to read the elements in the order they occur in memory, except for reversing the data when strides are negative. Return : [ MaskedArray] Flattened 1D masked array. Code #1 : Python3 # Python program explaining # numpy.MaskedArray.ravel() method # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma # creating input array in_arr = geek.array([[1, 2], [ 3, -1]]) print ("Input array : ", in_arr) # Now we are creating a masked array. # by making two entry as invalid. mask_arr = ma.masked_array(in_arr, mask =[[0, 1], [ 1, 0]]) print ("Masked array : ", mask_arr) # applying MaskedArray.ravel methods to mask array out_arr = mask_arr.ravel() print ("1D view of masked array : ", out_arr) Output: Input array : [[ 1 2] [ 3 -1]] Masked array : [[1 --] [-- -1]] 1D view of masked array : [1 -- -- -1] Code #2 : Python3 # Python program explaining # numpy.MaskedArray.ravel() method # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma # creating input array in_arr = geek.array([[[ 2e8, 3e-5]], [[ -45.0, 2e5]]]) print ("Input array : ", in_arr) # Now we are creating a masked array. # by making one entry as invalid. mask_arr = ma.masked_array(in_arr, mask =[[[ 1, 0]], [[ 0, 0]]]) print ("3D Masked array : ", mask_arr) # applying MaskedArray.ravel methods to mask array out_arr = mask_arr.ravel() print ("1D view of masked array : ", out_arr) Output: Input array : [[[ 2.0e+08 3.0e-05]] [[-4.5e+01 2.0e+05]]] 3D Masked array : [[[-- 3e-05]] [[-45.0 200000.0]]] 1D view of masked array : [-- 3e-05 -45.0 200000.0] Comment More infoAdvertise with us Next Article Numpy MaskedArray.ravel() function | Python jana_sayantan Follow Improve Article Tags : Python Python-numpy Python numpy-arrayManipulation Practice Tags : python Similar Reads Numpy MaskedArray.reshape() function | Python numpy.MaskedArray.reshape() function is used to give a new shape to the masked array without changing its data.It returns a masked array containing the same data, but with a new shape. The result is a view on the original array; if this is not possible, a ValueError is raised. Syntax : numpy.ma.resh 3 min read Numpy MaskedArray.var() function | Python numpy.MaskedArray.var() function is used to compute the variance along the specified axis. It returns the variance of the masked array elements, a measure of the spread of a distribution. The variance is computed for the flattened array by default, otherwise over the specified axis. Syntax : numpy.m 3 min read Numpy MaskedArray.resize() function | Python numpy.MaskedArray.resize() function is used to a make a new masked array with the specified size and shape from the given array.The new array is filled with repeated copies of arr (in the order that the data are stored in memory). If arr is masked, the new array will be masked, and the new mask will 2 min read Numpy MaskedArray.transpose() function | Python numpy.MaskedArray.transpose() function is used to permute the dimensions of an masked array. Syntax : numpy.ma.transpose(axis) Parameters: axis :[list of ints, optional] By default, reverse the dimensions, otherwise permute the axes according to the values given. Return : [ ndarray] Resultant array 2 min read Numpy MaskedArray.std() function | Python numpy.MaskedArray.std() function is used to compute the standard deviation along the specified axis.Here masked entries are ignored. The standard deviation is computed for the flattened array by default, otherwise over the specified axis. Syntax : numpy.ma.std(arr, axis=None, dtype=None, out=None, d 3 min read Numpy MaskedArray.sum() function | Python numpy.MaskedArray.median() function is used to compute the sum of the masked array elements over the given axis. Syntax : numpy.ma.sum(arr, axis=None, dtype=None, out=None, keepdims=False) Parameters: arr : [ ndarray ] Input masked array. axis :[ int, optional] Axis along which the sum is computed. 3 min read Numpy MaskedArray.swapaxes() function | Python numpy.MaskedArray.swapaxes() function is used to Return a view of the masked array with axis1 and axis2 interchanged. Syntax : numpy.ma.swapaxes(axis1, axis2) Parameters: axis1 :[int] First axis. axis2 : [int] Second axis. Return : [ swapped_array] Resultant array. Code #1 : Python3 # Python program 2 min read Numpy MaskedArray.all() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays. Masked arrays are arr 3 min read Numpy MaskedArray.any() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 3 min read Numpy MaskedArray.dot() function | Python numpy.MaskedArray.dot() function is used to calculate the dot product of two mask arrays. Syntax : numpy.ma.dot(arr1, arr2, strict=False) Parameters: arr1, arr2:[ ndarray] Inputs arrays. strict : [bool, optional] Whether masked data are propagated (True) or set to 0 (False) for the computation. Defa 3 min read Like