Open In App

numpy.ma.notmasked_contiguous function | Python

Last Updated : 22 Apr, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
numpy.ma.notmasked_contiguous() function find contiguous unmasked data in a masked array along the given axis.
Syntax : numpy.ma.notmasked_contiguous(arr, axis = None) Parameters : arr : [array_like] The input array. axis : [int, optional] Axis along which to perform the operation. Default is None. Return : [list] A list of slices (start and end indexes) of unmasked indexes in the array. If the input is 2d and axis is specified, the result is a list of lists.
Code #1 : Python3
# Python program explaining
# numpy.ma.notmasked_contiguous() function

# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 

arr = geek.arange(12).reshape((3, 4))
mask = geek.zeros_like(arr)
mask[1:, :-1] = 1; mask[0, 1] = 1; mask[-1, 0] = 0
ma = geek.ma.array(arr, mask = mask)

gfg = geek.ma.notmasked_contiguous(ma)

print (gfg)
Output :
[slice(0, 1, None), slice(2, 4, None), slice(7, 9, None), slice(11, 12, None)]
  Code #2 : Python3
# Python program explaining
# numpy.ma.notmasked_contiguous() function

# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 

arr = geek.arange(12).reshape((3, 4))
mask = geek.zeros_like(arr)
mask[1:, :-1] = 1; mask[0, 1] = 1; mask[-1, 0] = 0
ma = geek.ma.array(arr, mask = mask)

gfg = geek.ma.notmasked_contiguous(ma, axis = 1)

print (gfg)
Output :
[[slice(0, 1, None), slice(2, 4, None)], [slice(3, 4, None)], [slice(0, 1, None), slice(3, 4, None)]]

Next Article

Similar Reads