Open In App

numpy.ma.mask_cols() function | Python

Last Updated : 22 Apr, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
In thisnumpy.ma.mask_cols() function, mask columns of a 2D array that contain masked values. This function is a shortcut to mask_rowcols with axis equal to 1.
Syntax : numpy.ma.mask_cols(arr, axis = None) Parameters : arr : [array_like, MaskedArray] The array to mask. axis : [int, optional] Axis along which to perform the operation. Default is None. Return : [MaskedArray] A modified version of the input array.
Code #1 : Python3
# Python program explaining
# numpy.ma.mask_cols() function

# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 

arr = geek.zeros((3, 3), dtype = int)
arr[1, 1] = 1
 
arr = ma.masked_equal(arr, 1)

gfg = ma.mask_cols(arr)

print (gfg)
Output :
[[0 -- 0]
 [0 -- 0]
 [0 -- 0]]
  Code #2 : Python3
# Python program explaining
# numpy.ma.mask_cols() function

# importing numpy as geek  
# and numpy.ma module as ma 
import numpy as geek 
import numpy.ma as ma 

arr = geek.zeros((4, 4), dtype = int)
arr[2, 2] = 1
 
arr = ma.masked_equal(arr, 1)

gfg = ma.mask_cols(arr)

print (gfg)
Output :
[[0 0 -- 0]
 [0 0 -- 0]
 [0 0 -- 0]
 [0 0 -- 0]]

Next Article

Similar Reads