numpy.load() in Python Last Updated : 29 Nov, 2018 Comments Improve Suggest changes Like Article Like Report numpy.load() function return the input array from a disk file with npy extension(.npy). Syntax : numpy.load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII') Parameters: file : : file-like object, string, or pathlib.Path.The file to read. File-like objects must support the seek() and read() methods. mmap_mode : If not None, then memory-map the file, using the given mode (see numpy.memmap for a detailed description of the modes). allow_pickle : Allow loading pickled object arrays stored in npy files. fix_imports : Only useful when loading Python 2 generated pickled files on Python 3,which includes npy/npz files containing object arrays. encoding : Only useful when loading Python 2 generated pickled files in Python 3, which includes npy/npz files containing object arrays. Returns : Data stored in the file. For .npz files, the returned instance of NpzFile class must be closed to avoid leaking file descriptors. Code #1 : Working Python3 # Python program explaining # load() function import numpy as geek a = geek.array(([i + j for i in range(3) for j in range(3)])) # a is printed. print("a is:") print(a) geek.save('geekfile', a) print("the array is saved in the file geekfile.npy") # the array is saved in the file geekfile.npy b = geek.load('geekfile.npy') # the array is loaded into b print("b is:") print(b) # b is printed from geekfile.npy print("b is printed from geekfile.npy") Output : a is: [0, 1, 2, 1, 2, 3, 2, 3, 4] the array is saved in the file geekfile.npy b is: [0, 1, 2, 1, 2, 3, 2, 3, 4] b is printed from geekfile.npy Code #2: Python3 # Python program explaining # load() function import numpy as geek # a and b are numpy arrays. a = geek.array(([i + j for i in range(3) for j in range(3)])) b = geek.array([i + 1 for i in range(3)]) # a and b are printed. print("a is:") print(a) print("b is:") print(b) # a and b are stored in geekfile.npz geek.savez('geekfile.npz', a = a, b = b) print("a and b are stored in geekfile.npz") # compressed file is loaded c = geek.load('geekfile.npz') print("after loading...") print("a is:", c['a']) print("b is:", c['b']) Output : a is: [0 1 2 1 2 3 2 3 4] b is: [1 2 3] a and b are stored in geekfile.npz after loading... a is: [0 1 2 1 2 3 2 3 4] b is: [1 2 3] Comment More infoAdvertise with us Next Article numpy.load() in Python A ArkadipGhosh Follow Improve Article Tags : Python Python-numpy Python numpy-io Practice Tags : python Similar Reads numpy.loadtxt() in Python numpy.loadtxt() function is used to load data from a text file and return it as a NumPy array. It is ideal for reading large data sets that are stored in simple text formats, such as CSV files or space-separated files.Example: Basic Usage of numpy.loadtxt() for Reading a Simple Space-Separated FileT 4 min read Python NumPy Numpy is a general-purpose array-processing package. It provides a high-performance multidimensional array object, and tools for working with these arrays. It is the fundamental package for scientific computing with Python.Besides its obvious scientific uses, Numpy can also be used as an efficient m 6 min read json.load() in Python The full-form of JSON is JavaScript Object Notation. It means that a script (executable) file which is made of text in a programming language, is used to store and transfer the data. Python supports JSON through a built-in package called json. To use this feature, we import the json package in Pytho 3 min read json.loads() in Python JSON is a lightweight data format used for storing and exchanging data across systems. Python provides a built-in module called json to work with JSON data easily. The json.loads() method of JSON module is used to parse a valid JSON string and convert it into a Python dictionary. For example:Pythoni 4 min read numpy.fromstring() function â Python numpy.fromstring() function create a new one-dimensional array initialized from text data in a string. Syntax : numpy.fromstring(string, dtype = float, count = -1, sep = ' ') Parameters : string : [str] A string that contained the data. dtype : [data-type, optional] Data-type of the array. Default d 1 min read numpy.fromiter() function â Python NumPy's fromiter() function is a handy tool for creating a NumPy array from an iterable object. This iterable can be any Python object that provides elements one at a time. The function is especially useful when you need to convert data from a custom data source, like a file or generator, into a Num 2 min read Lazy import in Python In this article, we will learn how to do Lazy import in Python. For this, let's first understand the lazy import. What is Lazy Import? It is a feature of the Pyforest module that allows the user to perform the task without adding libraries to the code snippet as the task of this function is to add t 5 min read Learn Python Basics âPython is a versatile, high-level programming language known for its readability and simplicity. Whether you're a beginner or an experienced developer, Python offers a wide range of functionalities that make it a popular choice in various domains such as web development, data science, artificial in 9 min read Python Introduction Python was created by Guido van Rossum in 1991 and further developed by the Python Software Foundation. It was designed with focus on code readability and its syntax allows us to express concepts in fewer lines of code.Key Features of PythonPythonâs simple and readable syntax makes it beginner-frien 3 min read File Mode in Python In Python, the file mode specifies the purpose and the operations that can be performed on a file when it is opened. When you open a file using the open() function, you can specify the file mode as the second argument. Different File Mode in PythonBelow are the different types of file modes in Pytho 5 min read Like