numpy.find_common_type() function - Python Last Updated : 18 Jun, 2020 Comments Improve Suggest changes Like Article Like Report numpy.find_common_type() function determine common type following standard coercion rules. Syntax : numpy.find_common_type(array_types, scalar_types) Parameters : array_types : [sequence] A list of dtypes or dtype convertible objects representing arrays. scalar_types : [sequence] A list of dtypes or dtype convertible objects representing scalars. Return : [dtype] The common data type, which is the maximum of array_types ignoring scalar_types, unless the maximum of scalar_types is of a different kind. Code #1 : Python3 # Python program explaining # numpy.find_common_type() function # importing numpy as geek import numpy as geek gfg = geek.find_common_type([geek.float32], [geek.int64, geek.float64]) print (gfg) Output : float32 Code #2 : Python3 # Python program explaining # numpy.find_common_type() function # importing numpy as geek import numpy as geek gfg = geek.find_common_type([geek.float32], [complex]) print (gfg) Output : complex128 Comment More infoAdvertise with us Next Article numpy.find_common_type() function - Python sanjoy_62 Follow Improve Article Tags : Python Python-numpy Practice Tags : python Similar Reads numpy.common_type() function â Python numpy.common_type() function return a scalar type which is common to the input arrays. Syntax : numpy.common_type(arrays) Parameters : array1, array2, .... : [ndarrays] Input arrays. Return : [dtype] Return the data type which is common to the input arrays. Code #1 : Python3 # Python program explain 1 min read numpy.typename() function â Python numpy.typename() function return a description for the given data type code. Syntax : numpy.typename(char) Parameters : char : [str] Data type code. Return : [str] Description of the input data type code. Code #1 : Python3 # Python program explaining # numpy.typename() function # importing numpy as 2 min read numpy.dtype.subdtype() function â Python numpy.dtype.subdtype() function returns Tuple(item_dtype, shape) if this dtype describes a sub-array, and None otherwise. Syntax : numpy.dtype.subdtype(type) type : [dtype] The input data-type. Return : Return Tuple(item_dtype, shape) if this dtype describes a sub-array, and None otherwise. Code #1 1 min read Python most_common() Function most_common() function is a method provided by the Counter class in Python's collections module. It returns a list of the n most common elements and their counts from a collection, sorted by frequency. Example:Pythonfrom collections import Counter a = ['apple', 'banana', 'apple', 'orange', 'banana', 2 min read numpy.result_type() function â Python numpy.result_type() function returns the type that results from applying the NumPy type promotion rules to the arguments. NumPy type promotion by example : Suppose calculating 3*arr, where arr is an array of 32-bit floats, intuitively should result in a 32-bit float output. If the 3 is a 32-bit inte 1 min read numpy.sctype2char() function â Python numpy.sctype2char() function return the string representation of a scalar dtype. Syntax : numpy.sctype2char(sctype) Parameters : sctype : [scalar dtype or object] If a sctype is a scalar dtype, the corresponding string character is returned. If an object, sctype2char tries to infer its scalar type a 1 min read type() function in Python The type() function is mostly used for debugging purposes. Two different types of arguments can be passed to type() function, single and three arguments. If a single argument type(obj) is passed, it returns the type of the given object. If three argument types (object, bases, dict) are passed, it re 5 min read numpy.promote_types() function â Python numpy.promote_types() function is a symmetric function which returns the data type with the smallest size and smallest scalar kind to which both type1 and type2 may be safely cast. The returned data type is always in native byte order. Syntax : numpy.promote_types(type1, type2) Parameters : type1 : 1 min read numpy.who function - Python numpy.who() function print the NumPy arrays in the given dictionary. Syntax : numpy.who(vardict = None) Parameters : vardict : [dict, optional] A dictionary possibly containing ndarrays. Return : Returns âNoneâ. If there is no dictionary passed in or vardict is None then returns NumPy arrays in the 1 min read numpy.maximum_sctype() function â Python numpy.maximum_sctype() function return the scalar type of highest precision of the same kind as the input. Syntax : numpy.maximum_sctype(t) Parameters : t : [dtype or dtype specifier] The input data type. This can be a dtype object or an object that is convertible to a dtype. Return : [dtype] The hi 1 min read Like