numpy.diff() in Python Last Updated : 22 Jul, 2021 Comments Improve Suggest changes Like Article Like Report numpy.diff(arr[, n[, axis]]) function is used when we calculate the n-th order discrete difference along the given axis. The first order difference is given by out[i] = arr[i+1] - arr[i] along the given axis. If we have to calculate higher differences, we are using diff recursively. Syntax: numpy.diff()Parameters: arr : [array_like] Input array. n : [int, optional] The number of times values are differenced. axis : [int, optional] The axis along which the difference is taken, default is the last axis.Returns : [ndarray]The n-th discrete difference. The output is the same as a except along axis where the dimension is smaller by n. Code #1 : Python3 # Python program explaining # numpy.diff() method # importing numpy import numpy as geek # input array arr = geek.array([1, 3, 4, 7, 9]) print("Input array : ", arr) print("First order difference : ", geek.diff(arr)) print("Second order difference : ", geek.diff(arr, n = 2)) print("Third order difference : ", geek.diff(arr, n = 3)) Output: Input array : [1 3 4 7 9] First order difference : [2 1 3 2] Second order difference : [-1 2 -1] Third order difference : [ 3 -3] Code #2 : Python3 # Python program explaining # numpy.diff() method # importing numpy import numpy as geek # input array arr = geek.array([[1, 2, 3, 5], [4, 6, 7, 9]]) print("Input array : ", arr) print("Difference when axis is 0 : ", geek.diff(arr, axis = 0)) print("Difference when axis is 1 : ", geek.diff(arr, axis = 1)) Output: Input array : [[1 2 3 5] [4 6 7 9]] Difference with axis 0 : [[3 4 4 4]] Difference with axis 1 : [[1 1 2] [2 1 2]] Comment More infoAdvertise with us Next Article numpy.diff() in Python sanjoy_62 Follow Improve Article Tags : Python Numpy Python-numpy Practice Tags : python Similar Reads Python | Numpy np.ediff1d() method With the help of np.ediff1d() method, we can get the 1D array of differences between two consecutive elements by using np.ediff1d() method. Syntax : np.ediff1d(array) Return : Return 1D array having differences of consecutive elements. Example #1 : In this example we can see that by using np.ediff1d 1 min read numpy.ma.ediff1d() function in Python numpy.ma.ediff1d() function return the differences between consecutive elements of an array. Syntax : numpy.ma.ediff1d(arr, to_end = None, to_begin = None) Parameters : arr : [array_like] Input array. to_end : [array_like, optional] Number to append at the end of the returned differences. to_begin 1 min read numpy.not_equal() in Python The numpy.not_equal() checks whether two element are unequal or not. Syntax : numpy.not_equal(x1, x2[, out])Parameters : x1, x2 : [array_like]Input Array whose elements we want to checkout : [ndarray, optional]Output array that returns True/False. A placeholder the same shape as x1 to store the resu 2 min read numpy.polysub() in Python numpy.polysub() :This function helps to find the difference of two polynomials and then returning the result as a polynomial. Each input polynomial must be a sequence of polynomial coefficients, from highest to lowest degree. Parameters : p1 : Input polynomial 1 : 1x + 2. p2 : Input polynomial 2 : 9 1 min read numpy.less_equal() in Python The numpy.less_equal() function checks whether x1 is <= x2 or not. Syntax : numpy.less_equal(x1, x2[, out]) Parameters : x1, x2 : [array_like]Input arrays. If x1.shape != x2.shape, they must be broadcastable to a common shape out : [ndarray, boolean]Array of bools, or a single bool if x1 and x2 a 2 min read numpy.subtract() in Python numpy.subtract() function is used when we want to compute the difference of two array.It returns the difference of arr1 and arr2, element-wise.Syntax : numpy.subtract(arr1, arr2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj], ufunc 'subtract' 3 min read Python | Numpy np.lagsub() method np.lagub() method is used to subtract one Laguerre series to another.It returns the difference of two Laguerre series c1 - c2. Syntax : np.lagub(c1, c2) Parameters: c1, c2 :[ array_like ] 1-D arrays of Laguerre series coefficients ordered from low to high. Return : [ndarray] Laguerre series coeffici 1 min read numpy.greater_equal() in Python The numpy.greater_equal() checks whether x1 >= x2 or not. Syntax : numpy.greater_equal(x1, x2[, out]) Parameters : x1, x2 : [array_like]Input arrays. If x1.shape != x2.shape, they must be broadcastable to a common shape out : [ndarray, boolean]Array of bools, or a single bool if x1 and x2 are sca 2 min read Python | Pandas Index.difference() Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.Pandas Index.difference() function return a new Index with elements from the index that 2 min read numpy.setdiff1d() function in Python numpy.setdiff1d() function find the set difference of two arrays and return the unique values in arr1 that are not in arr2. Syntax : numpy.setdiff1d(arr1, arr2, assume_unique = False) Parameters : arr1 : [array_like] Input array. arr2 : [array_like] Input comparison array. assume_unique : [bool] If 1 min read Like