numpy.clip() in Python Last Updated : 29 Nov, 2018 Comments Improve Suggest changes Like Article Like Report numpy.clip() function is used to Clip (limit) the values in an array. Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of [0, 1] is specified, values smaller than 0 become 0, and values larger than 1 become 1. Syntax : numpy.clip(a, a_min, a_max, out=None) Parameters : a : Array containing elements to clip. a_min : Minimum value. --> If None, clipping is not performed on lower interval edge. Not more than one of a_min and a_max may be None. a_max : Maximum value. --> If None, clipping is not performed on upper interval edge. Not more than one of a_min and a_max may be None. --> If a_min or a_max are array_like, then the three arrays will be broadcasted to match their shapes. out : Results will be placed in this array. It may be the input array for in-place clipping. out must be of the right shape to hold the output. Its type is preserved. Return : clipped_array Code #1 : Python3 # Python3 code demonstrate clip() function # importing the numpy import numpy as np in_array = [1, 2, 3, 4, 5, 6, 7, 8 ] print ("Input array : ", in_array) out_array = np.clip(in_array, a_min = 2, a_max = 6) print ("Output array : ", out_array) Output : Input array : [1, 2, 3, 4, 5, 6, 7, 8] Output array : [2 2 3 4 5 6 6 6] Code #2 : Python3 # Python3 code demonstrate clip() function # importing the numpy import numpy as np in_array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] print ("Input array : ", in_array) out_array = np.clip(in_array, a_min =[3, 4, 1, 1, 1, 4, 4, 4, 4, 4], a_max = 9) print ("Output array : ", out_array) Output : Input array : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Output array : [3 4 3 4 5 6 7 8 9 9] Comment More infoAdvertise with us Next Article numpy.clip() in Python jana_sayantan Follow Improve Article Tags : Python Python-numpy Python numpy-Mathematical Function Practice Tags : python Similar Reads numpy.compress() in Python The numpy.compress() function returns selected slices of an array along mentioned axis, that satisfies an axis. Syntax: numpy.compress(condition, array, axis = None, out = None) Parameters : condition : [array_like]Condition on the basis of which user extract elements. Applying condition on input_ar 2 min read numpy.put() in Python The numpy.put() function replaces specific elements of an array with given values of p_array. Array indexed works on flattened array. Syntax: numpy.put(array, indices, p_array, mode = 'raise') Parameters : array : array_like, target array indices : index of the values to be fetched p_array : array_l 1 min read numpy.take() in Python The numpy.take() function returns elements from array along the mentioned axis and indices. Syntax: numpy.take(array, indices, axis = None, out = None, mode ='raise') Parameters : array : array_like, input array indices : index of the values to be fetched axis : [int, optional] axis over which we ne 2 min read Numpy recarray.clip() function | Python In numpy, arrays may have a data-types containing fields, analogous to columns in a spreadsheet. An example is [(a, int), (b, float)], where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as arr['a'] and arr['b']. Record array 3 min read numpy.squeeze() in Python The numpy.squeeze() is a useful Python function, which is utilized for the removal of single-dimensional elements from the shape of a NumPy array. It comes in very handy when you have to discard redundant dimensions (like a dimension with size 1) after operations that introduce extra dimensions.Basi 3 min read Python | Pandas Panel.clip() In Pandas, Panel is a very important container for three-dimensional data. The names for the 3 axes are intended to give some semantic meaning to describing operations involving panel data and, in particular, econometric analysis of panel data. Panel.clip() function is used to trim values at input t 2 min read Cut a MP3 file in Python An MP3 file is an audio file that uses a compression algorithm to reduce the overall file size. In this article, we will learn how to cut a particular portion of an MP3 file in Python. Here we will first open the mp3 audio then slice the audio with Python code and save the result. Before we go forw 3 min read numpy.ma.clump_masked() function | Python numpy.ma.clump_masked() function returns a list of slices corresponding to the masked clumps of a 1-D array. Syntax : numpy.ma.clump_masked(arr) Parameters : arr : [ndarray] A one-dimensional masked array. Return : [list of slice] The list of slices, one for each continuous region of masked elements 1 min read numpy.trim_zeros() in Python numpy.trim_zeros function is used to trim the leading and/or trailing zeros from a 1-D array or sequence. Syntax: numpy.trim_zeros(arr, trim) Parameters: arr : 1-D array or sequence trim : trim is an optional parameter with default value to be 'fb'(front and back) we can either select 'f'(front) and 2 min read numpy.ma.clump_unmasked() function | Python numpy.ma.clump_unmasked() function returns list of slices corresponding to the unmasked clumps of a 1-D array. Syntax : numpy.ma.clump_unmasked(arr) Parameters : arr : [ndarray] A one-dimensional masked array. Return : [list of slice] The list of slices, one for each continuous region of unmasked el 1 min read Like