numpy.bitwise_or() in Python Last Updated : 29 Nov, 2018 Comments Improve Suggest changes Like Article Like Report numpy.bitwise_or()function is used to Compute the bit-wise OR of two array element-wise. This function computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. Syntax : numpy.bitwise_or(arr1, arr2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, ufunc ‘bitwise_or’) Parameters : arr1 : [array_like] Input array. arr2 : [array_like] Input array. out : [ndarray, optional] A location into which the result is stored. -> If provided, it must have a shape that the inputs broadcast to. -> If not provided or None, a freshly-allocated array is returned. **kwargs : allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function. where : [array_like, optional]True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone. Return : [ndarray or scalar] Result. This is a scalar if both x1 and x2 are scalars. Code #1 : Working Python # Python program explaining # bitwise_or() function import numpy as geek in_num1 = 10 in_num2 = 11 print ("Input number1 : ", in_num1) print ("Input number2 : ", in_num2) out_num = geek.bitwise_or(in_num1, in_num2) print ("bitwise_or of 10 and 11 : ", out_num) Output : Input number1 : 10 Input number2 : 11 bitwise_or of 10 and 11 : 11 Code #2 : Python # Python program explaining # bitwise_or() function import numpy as geek in_arr1 = [2, 8, 125] in_arr2 = [3, 3, 115] print ("Input array1 : ", in_arr1) print ("Input array2 : ", in_arr2) out_arr = geek.bitwise_or(in_arr1, in_arr2) print ("Output array after bitwise_or: ", out_arr) Output : Input array1 : [2, 8, 125] Input array2 : [3, 3, 115] Output array after bitwise_or: [ 3 11 127] Code #3 : Python # Python program explaining # bitwise_or() function import numpy as geek in_arr1 = [True, False, True, False] in_arr2 = [False, False, True, True] print ("Input array1 : ", in_arr1) print ("Input array2 : ", in_arr2) out_arr = geek.bitwise_or(in_arr1, in_arr2) print ("Output array after bitwise_or: ", out_arr) Output : Input array1 : [True, False, True, False] Input array2 : [False, False, True, True] Output array after bitwise_or: [ True False True True] Comment More infoAdvertise with us Next Article numpy.bitwise_or() in Python jana_sayantan Follow Improve Article Tags : Python Python-numpy Python numpy-Binary Operation Practice Tags : python Similar Reads numpy.bitwise_and() in Python numpy.bitwise_and() function is used to Compute the bit-wise AND of two array element-wise. This function computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. Syntax : numpy.bitwise_and(arr1, arr2, /, out=None, *, where=True, casting='same_kind', ord 2 min read numpy.bitwise_xor() in Python numpy.bitwise_xor() function is used to Compute the bit-wise XOR of two array element-wise. This function computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. Syntax : numpy.bitwise_xor(arr1, arr2, /, out=None, *, where=True, casting='same_kind', ord 2 min read numpy.logical_or() in Python numpy.logical_or(arr1, arr2, out=None, where = True, casting = 'same_kind', order = 'K', dtype = None, ufunc 'logical_or') : This is a logical function and it helps user to find out the truth value of arr1 OR arr2 element-wise. Both the arrays must be of same shape. Parameters : arr1 : [array_like]I 2 min read Python Bitwise Operators Python bitwise operators are used to perform bitwise calculations on integers. The integers are first converted into binary and then operations are performed on each bit or corresponding pair of bits, hence the name bitwise operators. The result is then returned in decimal format.Note: Python bitwis 5 min read Python | Numpy np.mask_or() method With the help of np.mask_or() method, we can combine the two masks with logical OR operator by using np.mask_or() method. Syntax : np.mask_or(m1, m2) Return : Return the masks with logical OR operator. Example #1 : In this example we can see that by using np.mask_or() method, we are able to get the 1 min read numpy.any() in Python The numpy.any() function tests whether any array elements along the mentioned axis evaluate to True. Syntax :Â numpy.any(a, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters :Â array :[array_like]Input array or object whose elements, we need to test. axis : 3 min read numpy.binary_repr() in Python numpy.binary_repr(number, width=None) function is used to represent binary form of the input number as a string. For negative numbers, if width is not given, a minus sign is added to the front. If width is given, the twoâs complement of the number is returned, with respect to that width. In a twoâs- 3 min read numpy.ma.mask_or() function | Python numpy.ma.mask_or() function combine two masks with the logical_or operator. The result may be a view on m1 or m2 if the other is nomask (i.e. False). Syntax : numpy.ma.mask_or(m1, m2, copy = False, shrink = True) Parameters : m1, m2 : [ array_like] Input masks. copy : [bool, optional] If copy is Fal 2 min read Boolean Array in NumPy - Python The goal here is to work with Boolean arrays in NumPy, which contain only True or False values. Boolean arrays are commonly used for conditional operations, masking and filtering elements based on specific criteria. For example, given a NumPy array [1, 0, 1, 0, 1], we can create a Boolean array wher 3 min read Python | Numpy numpy.ndarray.__or__() With the help of Numpy numpy.ndarray.__or__() method, we can get the elements that is OR by the value that is provided as a parameter in numpy.ndarray.__or__() method. Syntax: ndarray.__or__($self, value, /) Return: self|value Example #1 : In this example we can see that every element is or by the v 1 min read Like