numpy bartlett() in Python Last Updated : 18 Jun, 2019 Summarize Comments Improve Suggest changes Share Like Article Like Report The Bartlett window is very similar to a triangular window, except that the endpoints are at zero. It is often used in signal processing for tapering a signal, without generating too much ripple in the frequency domain. Parameters(numpy.bartlett(M)): M : int Number of points in the output window. If zero or less, an empty array is returned. Returns: out : array The triangular window, with the maximum value normalized to one (the value one appears only if the number of samples is odd), with the first and last samples equal to zero. Example: Python3 1== import numpy as np print(np.bartlett(12)) Output: [ 0. 0.18181818 0.36363636 0.54545455 0.72727273 0.90909091 0.90909091 0.72727273 0.54545455 0.36363636 0.18181818 0. ] Plotting the window and its frequency response (requires SciPy and matplotlib): For Window: Python3 1== import numpy as np import matplotlib.pyplot as plt from numpy.fft import fft, fftshift window = np.bartlett(51) plt.plot(window) plt.title("Bartlett window") plt.ylabel("Amplitude") plt.xlabel("Sample") plt.show() Output: For frequency: Python3 1== import numpy as np import matplotlib.pyplot as plt from numpy.fft import fft, fftshift window = np.bartlett(51) plt.figure() A = fft(window, 2048) / 25.5 mag = np.abs(fftshift(A)) freq = np.linspace(-0.5, 0.5, len(A)) response = 20 * np.log10(mag) response = np.clip(response, -100, 100) plt.plot(freq, response) plt.title("Frequency response of Bartlett window") plt.ylabel("Magnitude [dB]") plt.xlabel("Normalized frequency [cycles per sample]") plt.axis('tight') plt.show() Output: Comment More infoAdvertise with us Next Article Python | Numpy np.gumbel() method R RituRajSingh7 Follow Improve Article Tags : Python Python-numpy Practice Tags : python Similar Reads numpy.all() in Python The numpy.all() function tests whether all array elements along the mentioned axis evaluate to True. Syntax: numpy.all(array, axis = None, out = None, keepdims = class numpy._globals._NoValue at 0x40ba726c) Parameters :Â array :[array_like]Input array or object whose elements, we need to test. axis 3 min read NumPy Array in Python NumPy (Numerical Python) is a powerful library for numerical computations in Python. It is commonly referred to multidimensional container that holds the same data type. It is the core data structure of the NumPy library and is optimized for numerical and scientific computation in Python. Table of C 2 min read numpy.exp() in Python numpy.exp(array, out = None, where = True, casting = 'same_kind', order = 'K', dtype = None) : This mathematical function helps user to calculate exponential of all the elements in the input array. Parameters : array : [array_like]Input array or object whose elements, we need to test. out : [ndarray 4 min read numpy.exp2() in Python numpy.exp2(array, out = None, where = True, casting = 'same_kind', order = 'K', dtype = None) : This mathematical function helps user to calculate 2**x for all x being the array elements. Parameters : array : [array_like]Input array or object whose elements, we need to test. out : [ndarray, optional 2 min read Python | Numpy np.gumbel() method With the help of np.gumbel() method, we can get the gumbel distribution in the form of an array by using np.gumbel() method. Syntax : np.gumbel(value, scale, size) Return : Return the array of gumbel distribution. Example #1 : In this example we can see that by using np.gumbel() method, we are able 1 min read numpy.std() in Python numpy.std() is a function provided by the NumPy library that calculates the standard deviation of an array or a set of values. Standard deviation is a measure of the amount of variation or dispersion of a set of values.\text{Standard Deviation} = \sqrt{\text{mean} \left( (x - x.\text{mean}())^2 \rig 3 min read Like