// C++ program to count number of swaps required
// to sort an array when only swapping of adjacent
// elements is allowed.
#include <bits/stdc++.h>
/* This function merges two sorted arrays and returns inversion
count in the arrays.*/
int merge(int arr[], int temp[], int left, int mid, int right)
{
int inv_count = 0;
int i = left; /* i is index for left subarray*/
int j = mid; /* j is index for right subarray*/
int k = left; /* k is index for resultant merged subarray*/
while ((i <= mid - 1) && (j <= right))
{
if (arr[i] <= arr[j])
temp[k++] = arr[i++];
else
{
temp[k++] = arr[j++];
/* this is tricky -- see above explanation/
diagram for merge()*/
inv_count = inv_count + (mid - i);
}
}
/* Copy the remaining elements of left subarray
(if there are any) to temp*/
while (i <= mid - 1)
temp[k++] = arr[i++];
/* Copy the remaining elements of right subarray
(if there are any) to temp*/
while (j <= right)
temp[k++] = arr[j++];
/*Copy back the merged elements to original array*/
for (i=left; i <= right; i++)
arr[i] = temp[i];
return inv_count;
}
/* An auxiliary recursive function that sorts the input
array and returns the number of inversions in the
array. */
int _mergeSort(int arr[], int temp[], int left, int right)
{
int mid, inv_count = 0;
if (right > left)
{
/* Divide the array into two parts and call
_mergeSortAndCountInv() for each of the parts */
mid = (right + left)/2;
/* Inversion count will be sum of inversions in
left-part, right-part and number of inversions
in merging */
inv_count = _mergeSort(arr, temp, left, mid);
inv_count += _mergeSort(arr, temp, mid+1, right);
/*Merge the two parts*/
inv_count += merge(arr, temp, left, mid+1, right);
}
return inv_count;
}
/* This function sorts the input array and returns the
number of inversions in the array */
int countSwaps(int arr[], int n)
{
int temp[n];
return _mergeSort(arr, temp, 0, n - 1);
}
/* Driver program to test above functions */
int main(int argv, char** args)
{
int arr[] = {1, 20, 6, 4, 5};
int n = sizeof(arr)/sizeof(arr[0]);
printf("Number of swaps is %d \n", countSwaps(arr, n));
return 0;
}