Next Larger element in n-ary tree
Last Updated :
21 Apr, 2025
Given a generic tree and a integer x. Find and return the node with next larger element in the tree i.e. find a node just greater than x. Return NULL if no node is present with value greater than x.
For example, in the given tree, x = 10, just greater node value is 12
The idea is maintain a node pointer res, which will contain the final resultant node.
Traverse the tree and check if root data is greater than x. If so, then compare the root data with res data.
If root data is greater than n and less than res data update res.
Implementation:
C++
// CPP program to find next larger element
// in an n-ary tree.
#include <bits/stdc++.h>
using namespace std;
// Structure of a node of an n-ary tree
struct Node {
int key;
vector<Node*> child;
};
// Utility function to create a new tree node
Node* newNode(int key)
{
Node* temp = new Node;
temp->key = key;
return temp;
}
void nextLargerElementUtil(Node* root, int x, Node** res)
{
if (root == NULL)
return;
// if root is less than res but greater than
// x update res
if (root->key > x)
if (!(*res) || (*res)->key > root->key)
*res = root;
// Number of children of root
int numChildren = root->child.size();
// Recur calling for every child
for (int i = 0; i < numChildren; i++)
nextLargerElementUtil(root->child[i], x, res);
return;
}
// Function to find next Greater element of x in tree
Node* nextLargerElement(Node* root, int x)
{
// resultant node
Node* res = NULL;
// calling helper function
nextLargerElementUtil(root, x, &res);
return res;
}
// Driver program
int main()
{
/* Let us create below tree
* 5
* / | \
* 1 2 3
* / / \ \
* 15 4 5 6
*/
Node* root = newNode(5);
(root->child).push_back(newNode(1));
(root->child).push_back(newNode(2));
(root->child).push_back(newNode(3));
(root->child[0]->child).push_back(newNode(15));
(root->child[1]->child).push_back(newNode(4));
(root->child[1]->child).push_back(newNode(5));
(root->child[2]->child).push_back(newNode(6));
int x = 5;
cout << "Next larger element of " << x << " is ";
cout << nextLargerElement(root, x)->key << endl;
return 0;
}
Java
// Java program to find next larger element
// in an n-ary tree.
import java.util.*;
class GFG
{
// Structure of a node of an n-ary tree
static class Node
{
int key;
Vector<Node> child;
};
static Node res;
// Utility function to create a new tree node
static Node newNode(int key)
{
Node temp = new Node();
temp.key = key;
temp.child = new Vector<>();
return temp;
}
static void nextLargerElementUtil(Node root, int x)
{
if (root == null)
return;
// if root is less than res but
// greater than x, update res
if (root.key > x)
if ((res == null || (res).key > root.key))
res = root;
// Number of children of root
int numChildren = root.child.size();
// Recur calling for every child
for (int i = 0; i < numChildren; i++)
nextLargerElementUtil(root.child.get(i), x);
return;
}
// Function to find next Greater element
// of x in tree
static Node nextLargerElement(Node root, int x)
{
// resultant node
res = null;
// calling helper function
nextLargerElementUtil(root, x);
return res;
}
// Driver Code
public static void main(String[] args)
{
/* Let us create below tree
* 5
* / | \
* 1 2 3
* / / \ \
* 15 4 5 6
*/
Node root = newNode(5);
(root.child).add(newNode(1));
(root.child).add(newNode(2));
(root.child).add(newNode(3));
(root.child.get(0).child).add(newNode(15));
(root.child.get(1).child).add(newNode(4));
(root.child.get(1).child).add(newNode(5));
(root.child.get(2).child).add(newNode(6));
int x = 5;
System.out.print("Next larger element of " +
x + " is ");
System.out.print(nextLargerElement(root, x).key + "\n");
}
}
// This code is contributed by 29AjayKumar
Python
# Python program to find next larger element
# in an n-ary tree.
class Node:
# Structure of a node of an n-ary tree
def __init__(self):
self.key = 0
self.child = []
# Utility function to create a new tree node
def newNode(key):
temp = Node()
temp.key = key
temp.child = []
return temp
res = None;
def nextLargerElementUtil(root,x):
global res
if (root == None):
return;
# if root is less than res but
# greater than x, update res
if (root.key > x):
if ((res == None or (res).key > root.key)):
res = root;
# Number of children of root
numChildren = len(root.child)
# Recur calling for every child
for i in range(numChildren):
nextLargerElementUtil(root.child[i], x)
return
# Function to find next Greater element
# of x in tree
def nextLargerElement(root,x):
# resultant node
global res
res=None
# Calling helper function
nextLargerElementUtil(root, x)
return res
# Driver code
root = newNode(5)
(root.child).append(newNode(1))
(root.child).append(newNode(2))
(root.child).append(newNode(3))
(root.child[0].child).append(newNode(15))
(root.child[1].child).append(newNode(4))
(root.child[1].child).append(newNode(5))
(root.child[2].child).append(newNode(6))
x = 5
print("Next larger element of " , x , " is ",end='')
print(nextLargerElement(root, x).key)
# This code is contributed by rag2127.
C#
// C# program to find next larger element
// in an n-ary tree.
using System;
using System.Collections.Generic;
class GFG
{
// Structure of a node of an n-ary tree
class Node
{
public int key;
public List<Node> child;
};
static Node res;
// Utility function to create a new tree node
static Node newNode(int key)
{
Node temp = new Node();
temp.key = key;
temp.child = new List<Node>();
return temp;
}
static void nextLargerElementUtil(Node root,
int x)
{
if (root == null)
return;
// if root is less than res but
// greater than x, update res
if (root.key > x)
if ((res == null ||
(res).key > root.key))
res = root;
// Number of children of root
int numChildren = root.child.Count;
// Recur calling for every child
for (int i = 0; i < numChildren; i++)
nextLargerElementUtil(root.child[i], x);
return;
}
// Function to find next Greater element
// of x in tree
static Node nextLargerElement(Node root,
int x)
{
// resultant node
res = null;
// calling helper function
nextLargerElementUtil(root, x);
return res;
}
// Driver Code
public static void Main(String[] args)
{
/* Let us create below tree
* 5
* / | \
* 1 2 3
* / / \ \
* 15 4 5 6
*/
Node root = newNode(5);
(root.child).Add(newNode(1));
(root.child).Add(newNode(2));
(root.child).Add(newNode(3));
(root.child[0].child).Add(newNode(15));
(root.child[1].child).Add(newNode(4));
(root.child[1].child).Add(newNode(5));
(root.child[2].child).Add(newNode(6));
int x = 5;
Console.Write("Next larger element of " +
x + " is ");
Console.Write(nextLargerElement(root, x).key + "\n");
}
}
// This code is contributed by PrinciRaj1992
JavaScript
// JavaScript program to find next larger element
// in an n-ary tree.
// Structure of a node of an n-ary tree
class Node
{
constructor()
{
this.key = 0;
this.child = [];
}
};
var res = null;
// Utility function to create a new tree node
function newNode(key)
{
var temp = new Node();
temp.key = key;
temp.child = [];
return temp;
}
function nextLargerElementUtil(root, x)
{
if (root == null)
return;
// if root is less than res but
// greater than x, update res
if (root.key > x)
if ((res == null ||
(res).key > root.key))
res = root;
// Number of children of root
var numChildren = root.child.length;
// Recur calling for every child
for (var i = 0; i < numChildren; i++)
nextLargerElementUtil(root.child[i], x);
return;
}
// Function to find next Greater element
// of x in tree
function nextLargerElement(root, x)
{
// resultant node
res = null;
// calling helper function
nextLargerElementUtil(root, x);
return res;
}
// Driver Code
/* Let us create below tree
* 5
* / | \
* 1 2 3
* / / \ \
* 15 4 5 6
*/
var root = newNode(5);
(root.child).push(newNode(1));
(root.child).push(newNode(2));
(root.child).push(newNode(3));
(root.child[0].child).push(newNode(15));
(root.child[1].child).push(newNode(4));
(root.child[1].child).push(newNode(5));
(root.child[2].child).push(newNode(6));
var x = 5;
console.log("Next larger element of " +
x + " is ");
console.log(nextLargerElement(root, x).key + "<br>");
OutputNext larger element of 5 is 6
Time complexity :- O(N)
Space complexity :- O(H)
Example no2:
Algorithmic steps:
Traverse the tree in post-order and store the nodes in a stack.
Create an empty hash map to store the next larger element for each node.
For each node in the stack, pop it from the stack and find the next larger element for it by checking the elements on the top of the stack. If an element on the top of the stack is greater than the current node, it is the next larger element for the current node. Keep popping elements from the stack until the top of the stack is less than or equal to the current node.
Add the next larger element for the current node to the hash map.
Repeat steps 3 and 4 until the stack is empty.
Return the next larger element for the target node by looking it up in the hash map.
Note: This algorithm assumes that the tree is a binary search tree, where the value of each node is greater than the values of its left child and less than the values of its right child. If the tree is not a binary search tree, the above algorithm may not give correct result
Program: Implementing by Postorder traversing tree:
C++
#include <iostream>
#include <stack>
#include <unordered_map>
struct TreeNode {
int val;
vector<TreeNode*> children;
TreeNode(int x) : val(x) {}
};
void postOrder(TreeNode *root, stack<int> &nodes) {
if (!root) return;
for (int i = 0; i < root->children.size(); i++) {
postOrder(root->children[i], nodes);
}
nodes.push(root->val);
}
unordered_map<int, int> findNextLarger(TreeNode *root) {
stack<int> nodes;
unordered_map<int, int> nextLarger;
postOrder(root, nodes);
while (!nodes.empty()) {
int current = nodes.top();
nodes.pop();
while (!nodes.empty() && nodes.top() <= current) {
nodes.pop();
}
if (!nodes.empty()) {
nextLarger[current] = nodes.top();
} else {
nextLarger[current] = -1;
}
}
return nextLarger;
}
int main() {
TreeNode *root = new TreeNode(8);
root->children.push_back(new TreeNode(3));
root->children.push_back(new TreeNode(10));
root->children[0]->children.push_back(new TreeNode(1));
root->children[0]->children.push_back(new TreeNode(6));
root->children[0]->children[1]->children.push_back(new TreeNode(4));
root->children[0]->children[1]->children.push_back(new TreeNode(7));
root->children[1]->children.push_back(new TreeNode(14));
int target = 4;
unordered_map<int, int> nextLarger = findNextLarger(root);
cout << "The next larger element for " << target << " is: " << nextLarger[target] << endl;
return 0;
}
Java
import java.util.*;
class TreeNode {
int val;
List<TreeNode> children;
TreeNode(int x) {
val = x;
children = new ArrayList<>();
}
}
public class Main {
static void postOrder(TreeNode root, Stack<Integer> nodes) {
if (root == null)
return;
for (TreeNode child : root.children) {
postOrder(child, nodes);
}
nodes.push(root.val);
}
static Map<Integer, Integer> findNextLarger(TreeNode root) {
Stack<Integer> nodes = new Stack<>();
Map<Integer, Integer> nextLarger = new HashMap<>();
postOrder(root, nodes);
Stack<Integer> stack = new Stack<>();
for (int i = nodes.size() - 1; i >= 0; i--) {
while (!stack.isEmpty() && stack.peek() <= nodes.get(i)) {
stack.pop();
}
nextLarger.put(nodes.get(i), stack.isEmpty() ? -1 : stack.peek());
stack.push(nodes.get(i));
}
return nextLarger;
}
public static void main(String[] args) {
TreeNode root = new TreeNode(8);
root.children = new ArrayList<>();
root.children.add(new TreeNode(3));
root.children.add(new TreeNode(10));
root.children.get(0).children = new ArrayList<>();
root.children.get(0).children.add(new TreeNode(1));
root.children.get(0).children.add(new TreeNode(6));
root.children.get(0).children.get(1).children = new ArrayList<>();
root.children.get(0).children.get(1).children.add(new TreeNode(4));
root.children.get(0).children.get(1).children.add(new TreeNode(7));
root.children.get(1).children = new ArrayList<>();
root.children.get(1).children.add(new TreeNode(14));
int target = 4;
Map<Integer, Integer> nextLarger = findNextLarger(root);
Integer nextLargerValue = nextLarger.get(target);
System.out.println("The next larger element for " + target + " is: " + (nextLargerValue != null ? nextLargerValue : -1));
}
}
Python
class Node:
# Structure of a node of an n-ary tree
def __init__(self):
self.vcal = 0
self.children = []
# Utility function to create a new tree node
def newNode(val):
temp = Node()
temp.val = val
temp.children = []
return temp
def postOrder(root, nodes):
if not root:
return
for child in root.children:
postOrder(child, nodes)
nodes.append(root.val)
def findNextLarger(root):
nodes = []
nextLarger = {}
postOrder(root, nodes)
stack = []
for num in nodes[::-1]:
while stack and stack[-1] <= num:
stack.pop()
nextLarger[num] = stack[-1] if stack else -1
stack.append(num)
return nextLarger
root = newNode(8)
root.children.append(newNode(3))
root.children.append(newNode(10))
root.children[0].children.append(newNode(1))
root.children[0].children.append(newNode(6))
root.children[0].children[1].children.append(newNode(4))
root.children[0].children[1].children.append(newNode(7))
root.children[1].children.append(newNode(14))
target = 4
nextLarger = findNextLarger(root)
print(f"The next larger element for {target} is: {nextLarger[target]}")
C#
using System;
using System.Collections.Generic;
class Node {
// Structure of a node of an n-ary tree
public int val;
public List<Node> children;
public Node()
{
val = 0;
children = new List<Node>();
}
}
public class MainClass {
// Utility function to create a new tree node
static Node NewNode(int val)
{
Node temp = new Node();
temp.val = val;
temp.children = new List<Node>();
return temp;
}
// Function to perform post-order traversal and store
// nodes in a list
static void PostOrder(Node root, List<int> nodes)
{
if (root == null)
return;
// Recursively perform post-order traversal for each
// child node
foreach(Node child in root.children)
{
PostOrder(child, nodes);
}
// Add the current node value to the list after
// processing all its children
nodes.Add(root.val);
}
// Function to find the next larger element for each
// node in the tree
static Dictionary<int, int> FindNextLarger(Node root)
{
List<int> nodes = new List<int>();
Dictionary<int, int> nextLarger
= new Dictionary<int, int>();
PostOrder(root, nodes);
Stack<int> stack = new Stack<int>();
for (int i = nodes.Count - 1; i >= 0; i--) {
// Keep popping elements from the end of the
// list until we find the next larger element
while (stack.Count > 0
&& stack.Peek() <= nodes[i]) {
stack.Pop();
}
// If a next larger element is found, store it
// in the dictionary
if (stack.Count > 0) {
nextLarger[nodes[i]] = stack.Peek();
}
// If no next larger element is found, set the
// value to -1
else {
nextLarger[nodes[i]] = -1;
}
stack.Push(nodes[i]);
}
return nextLarger;
}
public static void Main()
{
Node root = NewNode(8);
root.children.Add(NewNode(3));
root.children.Add(NewNode(10));
root.children[0].children.Add(NewNode(1));
root.children[0].children.Add(NewNode(6));
root.children[0].children[1].children.Add(
NewNode(4));
root.children[0].children[1].children.Add(
NewNode(7));
root.children[1].children.Add(NewNode(14));
int target = 4;
Dictionary<int, int> nextLarger
= FindNextLarger(root);
int nextLargerValue;
if (nextLarger.TryGetValue(target,
out nextLargerValue)) {
Console.WriteLine("The next larger element for "
+ target
+ " is: " + nextLargerValue);
}
else {
Console.WriteLine("The next larger element for "
+ target + " is: -1");
}
}
}
JavaScript
class TreeNode {
constructor(x) {
this.val = x;
this.children = [];
}
}
function postOrder(root, nodes) {
if (!root) return;
for (const child of root.children) {
postOrder(child, nodes);
}
nodes.push(root.val);
}
function findNextLarger(root) {
const nodes = [];
const nextLarger = new Map();
postOrder(root, nodes);
const stack = [];
for (let i = nodes.length - 1; i >= 0; i--) {
while (stack.length > 0 && stack[stack.length - 1] <= nodes[i]) {
stack.pop();
}
nextLarger.set(nodes[i], stack.length > 0 ? stack[stack.length - 1] : -1);
stack.push(nodes[i]);
}
return nextLarger;
}
const root = new TreeNode(8);
root.children.push(new TreeNode(3));
root.children.push(new TreeNode(10));
root.children[0].children.push(new TreeNode(1));
root.children[0].children.push(new TreeNode(6));
root.children[0].children[1].children.push(new TreeNode(4));
root.children[0].children[1].children.push(new TreeNode(7));
root.children[1].children.push(new TreeNode(14));
const target = 4;
const nextLarger = findNextLarger(root);
const nextLargerValue = nextLarger.get(target);
console.log(`The next larger element for ${target} is: ${nextLargerValue !== undefined ? nextLargerValue : -1}`);
The next larger element for 4 is 7
Time and Space complexities are:
The time complexity of this algorithm is O(n), where n is the number of nodes in the n-ary tree. The reason for this is that we traverse each node in the tree once, and for each node, we perform a constant amount of work to find its next larger element.
The auxiliary space of this algorithm is O(n), where n is the number of nodes in the n-ary tree. The reason for this is that we use a stack to store the nodes in post-order and a hash map to store the next larger element for each node. The size of the stack and the hash map is proportional to the number of nodes in the tree, so their combined space complexity is O(n).
Next Larger element in n-ary tree
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem