Open In App

Minimum swap required to convert binary tree to binary search tree

Last Updated : 25 Nov, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array arr[] which represents a Complete Binary Tree i.e., if index i is the parent, index 2*i + 1 is the left child and index 2*i + 2 is the right child. The task is to find the minimum number of swaps required to convert it into a Binary Search Tree.

Examples:  

Input: arr[] = [5, 6, 7, 8, 9, 10, 11]
Output: 3
Explanation:
Binary tree of the given array:

Minimum-swap-required-to-convert-binary-tree-to-binary-search-tree-1

Swap 1: Swap node 8 with node 5.
Swap 2: Swap node 9 with node 10.
Swap 3: Swap node 10 with node 7.

So, minimum 3 swaps are required to obtain the below binary search tree:

Minimum-swap-required-to-convert-binary-tree-to-binary-search-tree-3


Input: arr[] = [1, 2, 3]
Output: 1
Explanation:
Binary tree of the given array:

Minimum-swap-required-to-convert-binary-tree-to-binary-search-tree-2

After swapping node 1 with node 2, obtain the below binary search tree:

Minimum-swap-required-to-convert-binary-tree-to-binary-search-tree-4

Approach:

The idea is to use the fact that inorder traversal of Binary Search Tree is in increasing order of their value. 
So, find the inorder traversal of the Binary Tree and store it in the array and try to sort the array. The minimum number of swap required to get the array sorted will be the answer.

C++
// C++ program for Minimum swap required
// to convert binary tree to binary search tree

#include<bits/stdc++.h>
using namespace std;

// Function to perform inorder traversal of the binary tree
// and store it in vector v
void inorder(vector<int>& arr, vector<int>& inorderArr, int index) {
  
    int n = arr.size();
    
    // If index is out of bounds, return
    if (index >= n)
        return;

    // Recursively visit left subtree
    inorder(arr, inorderArr, 2 * index + 1);
    
    // Store current node value in vector
    inorderArr.push_back(arr[index]);
    
    // Recursively visit right subtree
    inorder(arr, inorderArr, 2 * index + 2);
}

// Function to calculate minimum swaps 
// to sort inorder traversal
int minSwaps(vector<int>& arr) {
    int n = arr.size();
    vector<int> inorderArr;
    
    // Get the inorder traversal of the binary tree
    inorder(arr, inorderArr, 0);
    
    // Create an array of pairs to store value
  	// and original index
    vector<pair<int, int>> t(inorderArr.size());
    int ans = 0;
    
    // Store the value and its index
    for (int i = 0; i < inorderArr.size(); i++)
        t[i] = {inorderArr[i], i};
    
    // Sort the pair array based on values 
  	// to get BST order
    sort(t.begin(), t.end());
    
    // Find minimum swaps by detecting cycles
    for (int i = 0; i < t.size(); i++) {
      
        // If the element is already in the 
      	// correct position, continue
        if (i == t[i].second)
            continue;
        
        // Otherwise, perform swaps until the element
      	// is in the right place
        else {
          
            // Swap elements to correct positions
            swap(t[i].first, t[t[i].second].first);
            swap(t[i].second, t[t[i].second].second);
        }
        
        // Check if the element is still not
      	// in the correct position
        if (i != t[i].second)
            --i;  
        
        // Increment swap count
        ans++;
    }
  
    return ans;
}

int main() {
  
    vector<int> arr = { 5, 6, 7, 8, 9, 10, 11 };
    cout << minSwaps(arr) << endl;
}
Java
// Java program for Minimum swap required
// to convert binary tree to binary search tree
import java.util.Arrays;

class GfG {
    
    // Function to perform inorder traversal of the binary tree
    // and store it in an array
    static void inorder(int[] arr, int[] inorderArr, 
                        int index, int[] counter) {
        int n = arr.length;
        
        // Base case: if index is out of bounds, return
        if (index >= n)
            return;
        
        // Recursively visit left subtree
        inorder(arr, inorderArr, 2 * index + 1, counter);
        
        // Store current node value in the inorder array
        inorderArr[counter[0]] = arr[index];
        counter[0]++;
        
        // Recursively visit right subtree
        inorder(arr, inorderArr, 2 * index + 2, counter);
    }

    // Function to calculate minimum swaps 
    // to sort inorder traversal
    static int minSwaps(int[] arr) {
        int n = arr.length;
        int[] inorderArr = new int[n];
        int[] counter = new int[1];
        
        // Get the inorder traversal of the binary tree
        inorder(arr, inorderArr, 0, counter);
        
        // Create an array of pairs to store the value 
        // and its original index
        int[][] t = new int[n][2];
        int ans = 0;
        
        // Store the value and its original index
        for (int i = 0; i < n; i++) {
            t[i][0] = inorderArr[i];
            t[i][1] = i;
        }
        
        // Sort the array based on values to get BST order
        Arrays.sort(t, (a, b) -> Integer.compare(a[0], b[0]));
        
        // Find minimum swaps by detecting cycles
        boolean[] visited = new boolean[n];
        
        // Iterate through the array to find cycles
        for (int i = 0; i < n; i++) {
          
            // If the element is already visited or in
          	// the correct place, continue
            if (visited[i] || t[i][1] == i)
                continue;
            
            // Start a cycle and find the number of
          	// nodes in the cycle
            int cycleSize = 0;
            int j = i;
            
            while (!visited[j]) {
                visited[j] = true;
                j = t[j][1];
                cycleSize++;
            }
            
            // If there is a cycle, we need (cycleSize - 1)
          	// swaps to sort the cycle
            if (cycleSize > 1) {
                ans += (cycleSize - 1);
            }
        }
        
        // Return the total number of swaps
        return ans;
    }

    public static void main(String[] args) {
        int[] arr = {5, 6, 7, 8, 9, 10, 11}; 
        System.out.println(minSwaps(arr));
    }
}
Python
# Python program for Minimum swap required
# to convert binary tree to binary search tree

# Function to perform inorder traversal of the binary tree
# and store it in an array
def inorder(arr, inorderArr, index):
  
    # If index is out of bounds, return
    n = len(arr)
    if index >= n:
        return

    # Recursively visit left subtree
    inorder(arr, inorderArr, 2 * index + 1)

    # Store current node value in inorderArr
    inorderArr.append(arr[index])

    # Recursively visit right subtree
    inorder(arr, inorderArr, 2 * index + 2)

# Function to calculate minimum swaps 
# to sort inorder traversal
def minSwaps(arr):
    inorderArr = []

    # Get the inorder traversal of the binary tree
    inorder(arr, inorderArr, 0)

    # Create a list of pairs to store value and original index
    t = [(inorderArr[i], i) for i in range(len(inorderArr))]
    ans = 0

    # Sort the list of pairs based on values
    # to get BST order
    t.sort()

    # Initialize visited array
    visited = [False] * len(t)

    # Find minimum swaps by detecting cycles
    for i in range(len(t)):

        # If already visited or already in the
        # correct place, skip
        if visited[i] or t[i][1] == i:
            continue

        # Start a cycle and find the number of 
        # nodes in the cycle
        cycleSize = 0
        j = i

        # Process all elements in the cycle
        while not visited[j]:
            visited[j] = True
            j = t[j][1]
            cycleSize += 1

        # If there is a cycle of size `cycle_size`, we 
        # need `cycle_size - 1` swaps
        if cycleSize > 1:
            ans += (cycleSize - 1)

    # Return total number of swaps
    return ans

if __name__ == "__main__":
    arr = [5, 6, 7, 8, 9, 10, 11]
    print(minSwaps(arr))
C#
// C# program for Minimum swap required
// to convert binary tree to binary search tree
using System;
using System.Linq;

class GfG {
  
    // Function to perform inorder traversal of the binary tree
    // and store it in an array
    static void Inorder(int[] arr, int[] inorderArr, int index, ref int counter) {
        int n = arr.Length;

        // Base case: if index is out of bounds, return
        if (index >= n)
            return;

        // Recursively visit left subtree
        Inorder(arr, inorderArr, 2 * index + 1, ref counter);

        // Store current node value in inorderArr
        inorderArr[counter] = arr[index];
        counter++;

        // Recursively visit right subtree
        Inorder(arr, inorderArr, 2 * index + 2, ref counter);
    }

    // Function to calculate minimum
  	// swaps to sort inorder traversal
    static int MinSwaps(int[] arr) {
        int n = arr.Length;
        int[] inorderArr = new int[n];
        int counter = 0;

        // Get the inorder traversal of the binary tree
        Inorder(arr, inorderArr, 0, ref counter);

        // Create an array of pairs to store value 
      	// and original index
        var t = new (int, int)[n];
        for (int i = 0; i < n; i++) {
            t[i] = (inorderArr[i], i);
        }

        // Sort the array based on values to get BST order
        Array.Sort(t, (a, b) => a.Item1.CompareTo(b.Item1));

        // Initialize visited array
        bool[] visited = new bool[n];
        int ans = 0;

        // Find minimum swaps by detecting cycles
        for (int i = 0; i < n; i++) {
          
            // If already visited or already in 
          	// the correct place, skip
            if (visited[i] || t[i].Item2 == i)
                continue;

            // Start a cycle and find the number 
          	// of nodes in the cycle
            int cycleSize = 0;
            int j = i;

            // Process all elements in the cycle
            while (!visited[j]) {
                visited[j] = true;
                j = t[j].Item2;
                cycleSize++;
            }

            // If there is a cycle of size `cycle_size`, we
         	// need `cycle_size - 1` swaps
            if (cycleSize > 1)
            {
                ans += (cycleSize - 1);
            }
        }

        // Return total number of swaps
        return ans;
    }

    static void Main(string[] args) {
       
        int[] arr = { 5, 6, 7, 8, 9, 10, 11 };
        Console.WriteLine(MinSwaps(arr));
    }
}
JavaScript
// Javascript program for Minimum swap required
// to convert binary tree to binary search tree

// Inorder traversal to get values in sorted order
function inorder(arr, inorderArr, index) {

    // If index is out of bounds, return
    if (index >= arr.length)
        return;

    // Recursively visit left subtree
    inorder(arr, inorderArr, 2 * index + 1);

    // Store current node value in array
    inorderArr.push(arr[index]);

    // Recursively visit right subtree
    inorder(arr, inorderArr, 2 * index + 2);
}

// Function to calculate minimum swaps to sort inorder
// traversal
function minSwaps(arr) {

    let inorderArr = [];

    // Get the inorder traversal of the binary tree
    inorder(arr, inorderArr, 0);

    // Create an array of pairs to store value and original
    // index
    let t = inorderArr.map((val, i) => [val, i]);
    let ans = 0;

    // Sort the pair array based on values to get BST order
    t.sort((a, b) => a[0] - b[0]);

    // Find minimum swaps by detecting cycles
    let visited = Array(arr.length)
                      .fill(false);

    for (let i = 0; i < t.length; i++) {
    
        // If the element is already in the correct
        // position, continue
        if (visited[i] || t[i][1] === i)
            continue;

        // Otherwise, perform swaps until the element is in
        // the right place
        let cycleSize = 0;
        let j = i;

        while (!visited[j]) {
            visited[j] = true;
            j = t[j][1];
            cycleSize++;
        }

        // If there is a cycle, we need (cycleSize - 1)
        // swaps to sort the cycle
        if (cycleSize > 1) {
            ans += (cycleSize - 1);
        }
    }

    // Return total number of swaps
    return ans;
}

let arr = [ 5, 6, 7, 8, 9, 10, 11 ];
console.log(minSwaps(arr));

Output
3

Time Complexity: O(n*logn) where n is the number of elements in array.
Auxiliary Space: O(n) because it is using extra space for array 

Exercise: Can we extend this to normal binary tree, i.e., a binary tree represented using left and right pointers, and not necessarily complete?



Next Article
Article Tags :
Practice Tags :

Similar Reads