Minimum swap required to convert binary tree to binary search tree
Last Updated :
25 Nov, 2024
Given an array arr[] which represents a Complete Binary Tree i.e., if index i is the parent, index 2*i + 1 is the left child and index 2*i + 2 is the right child. The task is to find the minimum number of swaps required to convert it into a Binary Search Tree.
Examples:
Input: arr[] = [5, 6, 7, 8, 9, 10, 11]
Output: 3
Explanation:
Binary tree of the given array:
Swap 1: Swap node 8 with node 5.
Swap 2: Swap node 9 with node 10.
Swap 3: Swap node 10 with node 7.
So, minimum 3 swaps are required to obtain the below binary search tree:
Input: arr[] = [1, 2, 3]
Output: 1
Explanation:
Binary tree of the given array:
After swapping node 1 with node 2, obtain the below binary search tree:
Approach:
The idea is to use the fact that inorder traversal of Binary Search Tree is in increasing order of their value.
So, find the inorder traversal of the Binary Tree and store it in the array and try to sort the array. The minimum number of swap required to get the array sorted will be the answer.
C++
// C++ program for Minimum swap required
// to convert binary tree to binary search tree
#include<bits/stdc++.h>
using namespace std;
// Function to perform inorder traversal of the binary tree
// and store it in vector v
void inorder(vector<int>& arr, vector<int>& inorderArr, int index) {
int n = arr.size();
// If index is out of bounds, return
if (index >= n)
return;
// Recursively visit left subtree
inorder(arr, inorderArr, 2 * index + 1);
// Store current node value in vector
inorderArr.push_back(arr[index]);
// Recursively visit right subtree
inorder(arr, inorderArr, 2 * index + 2);
}
// Function to calculate minimum swaps
// to sort inorder traversal
int minSwaps(vector<int>& arr) {
int n = arr.size();
vector<int> inorderArr;
// Get the inorder traversal of the binary tree
inorder(arr, inorderArr, 0);
// Create an array of pairs to store value
// and original index
vector<pair<int, int>> t(inorderArr.size());
int ans = 0;
// Store the value and its index
for (int i = 0; i < inorderArr.size(); i++)
t[i] = {inorderArr[i], i};
// Sort the pair array based on values
// to get BST order
sort(t.begin(), t.end());
// Find minimum swaps by detecting cycles
for (int i = 0; i < t.size(); i++) {
// If the element is already in the
// correct position, continue
if (i == t[i].second)
continue;
// Otherwise, perform swaps until the element
// is in the right place
else {
// Swap elements to correct positions
swap(t[i].first, t[t[i].second].first);
swap(t[i].second, t[t[i].second].second);
}
// Check if the element is still not
// in the correct position
if (i != t[i].second)
--i;
// Increment swap count
ans++;
}
return ans;
}
int main() {
vector<int> arr = { 5, 6, 7, 8, 9, 10, 11 };
cout << minSwaps(arr) << endl;
}
Java
// Java program for Minimum swap required
// to convert binary tree to binary search tree
import java.util.Arrays;
class GfG {
// Function to perform inorder traversal of the binary tree
// and store it in an array
static void inorder(int[] arr, int[] inorderArr,
int index, int[] counter) {
int n = arr.length;
// Base case: if index is out of bounds, return
if (index >= n)
return;
// Recursively visit left subtree
inorder(arr, inorderArr, 2 * index + 1, counter);
// Store current node value in the inorder array
inorderArr[counter[0]] = arr[index];
counter[0]++;
// Recursively visit right subtree
inorder(arr, inorderArr, 2 * index + 2, counter);
}
// Function to calculate minimum swaps
// to sort inorder traversal
static int minSwaps(int[] arr) {
int n = arr.length;
int[] inorderArr = new int[n];
int[] counter = new int[1];
// Get the inorder traversal of the binary tree
inorder(arr, inorderArr, 0, counter);
// Create an array of pairs to store the value
// and its original index
int[][] t = new int[n][2];
int ans = 0;
// Store the value and its original index
for (int i = 0; i < n; i++) {
t[i][0] = inorderArr[i];
t[i][1] = i;
}
// Sort the array based on values to get BST order
Arrays.sort(t, (a, b) -> Integer.compare(a[0], b[0]));
// Find minimum swaps by detecting cycles
boolean[] visited = new boolean[n];
// Iterate through the array to find cycles
for (int i = 0; i < n; i++) {
// If the element is already visited or in
// the correct place, continue
if (visited[i] || t[i][1] == i)
continue;
// Start a cycle and find the number of
// nodes in the cycle
int cycleSize = 0;
int j = i;
while (!visited[j]) {
visited[j] = true;
j = t[j][1];
cycleSize++;
}
// If there is a cycle, we need (cycleSize - 1)
// swaps to sort the cycle
if (cycleSize > 1) {
ans += (cycleSize - 1);
}
}
// Return the total number of swaps
return ans;
}
public static void main(String[] args) {
int[] arr = {5, 6, 7, 8, 9, 10, 11};
System.out.println(minSwaps(arr));
}
}
Python
# Python program for Minimum swap required
# to convert binary tree to binary search tree
# Function to perform inorder traversal of the binary tree
# and store it in an array
def inorder(arr, inorderArr, index):
# If index is out of bounds, return
n = len(arr)
if index >= n:
return
# Recursively visit left subtree
inorder(arr, inorderArr, 2 * index + 1)
# Store current node value in inorderArr
inorderArr.append(arr[index])
# Recursively visit right subtree
inorder(arr, inorderArr, 2 * index + 2)
# Function to calculate minimum swaps
# to sort inorder traversal
def minSwaps(arr):
inorderArr = []
# Get the inorder traversal of the binary tree
inorder(arr, inorderArr, 0)
# Create a list of pairs to store value and original index
t = [(inorderArr[i], i) for i in range(len(inorderArr))]
ans = 0
# Sort the list of pairs based on values
# to get BST order
t.sort()
# Initialize visited array
visited = [False] * len(t)
# Find minimum swaps by detecting cycles
for i in range(len(t)):
# If already visited or already in the
# correct place, skip
if visited[i] or t[i][1] == i:
continue
# Start a cycle and find the number of
# nodes in the cycle
cycleSize = 0
j = i
# Process all elements in the cycle
while not visited[j]:
visited[j] = True
j = t[j][1]
cycleSize += 1
# If there is a cycle of size `cycle_size`, we
# need `cycle_size - 1` swaps
if cycleSize > 1:
ans += (cycleSize - 1)
# Return total number of swaps
return ans
if __name__ == "__main__":
arr = [5, 6, 7, 8, 9, 10, 11]
print(minSwaps(arr))
C#
// C# program for Minimum swap required
// to convert binary tree to binary search tree
using System;
using System.Linq;
class GfG {
// Function to perform inorder traversal of the binary tree
// and store it in an array
static void Inorder(int[] arr, int[] inorderArr, int index, ref int counter) {
int n = arr.Length;
// Base case: if index is out of bounds, return
if (index >= n)
return;
// Recursively visit left subtree
Inorder(arr, inorderArr, 2 * index + 1, ref counter);
// Store current node value in inorderArr
inorderArr[counter] = arr[index];
counter++;
// Recursively visit right subtree
Inorder(arr, inorderArr, 2 * index + 2, ref counter);
}
// Function to calculate minimum
// swaps to sort inorder traversal
static int MinSwaps(int[] arr) {
int n = arr.Length;
int[] inorderArr = new int[n];
int counter = 0;
// Get the inorder traversal of the binary tree
Inorder(arr, inorderArr, 0, ref counter);
// Create an array of pairs to store value
// and original index
var t = new (int, int)[n];
for (int i = 0; i < n; i++) {
t[i] = (inorderArr[i], i);
}
// Sort the array based on values to get BST order
Array.Sort(t, (a, b) => a.Item1.CompareTo(b.Item1));
// Initialize visited array
bool[] visited = new bool[n];
int ans = 0;
// Find minimum swaps by detecting cycles
for (int i = 0; i < n; i++) {
// If already visited or already in
// the correct place, skip
if (visited[i] || t[i].Item2 == i)
continue;
// Start a cycle and find the number
// of nodes in the cycle
int cycleSize = 0;
int j = i;
// Process all elements in the cycle
while (!visited[j]) {
visited[j] = true;
j = t[j].Item2;
cycleSize++;
}
// If there is a cycle of size `cycle_size`, we
// need `cycle_size - 1` swaps
if (cycleSize > 1)
{
ans += (cycleSize - 1);
}
}
// Return total number of swaps
return ans;
}
static void Main(string[] args) {
int[] arr = { 5, 6, 7, 8, 9, 10, 11 };
Console.WriteLine(MinSwaps(arr));
}
}
JavaScript
// Javascript program for Minimum swap required
// to convert binary tree to binary search tree
// Inorder traversal to get values in sorted order
function inorder(arr, inorderArr, index) {
// If index is out of bounds, return
if (index >= arr.length)
return;
// Recursively visit left subtree
inorder(arr, inorderArr, 2 * index + 1);
// Store current node value in array
inorderArr.push(arr[index]);
// Recursively visit right subtree
inorder(arr, inorderArr, 2 * index + 2);
}
// Function to calculate minimum swaps to sort inorder
// traversal
function minSwaps(arr) {
let inorderArr = [];
// Get the inorder traversal of the binary tree
inorder(arr, inorderArr, 0);
// Create an array of pairs to store value and original
// index
let t = inorderArr.map((val, i) => [val, i]);
let ans = 0;
// Sort the pair array based on values to get BST order
t.sort((a, b) => a[0] - b[0]);
// Find minimum swaps by detecting cycles
let visited = Array(arr.length)
.fill(false);
for (let i = 0; i < t.length; i++) {
// If the element is already in the correct
// position, continue
if (visited[i] || t[i][1] === i)
continue;
// Otherwise, perform swaps until the element is in
// the right place
let cycleSize = 0;
let j = i;
while (!visited[j]) {
visited[j] = true;
j = t[j][1];
cycleSize++;
}
// If there is a cycle, we need (cycleSize - 1)
// swaps to sort the cycle
if (cycleSize > 1) {
ans += (cycleSize - 1);
}
}
// Return total number of swaps
return ans;
}
let arr = [ 5, 6, 7, 8, 9, 10, 11 ];
console.log(minSwaps(arr));
Time Complexity: O(n*logn) where n is the number of elements in array.
Auxiliary Space: O(n) because it is using extra space for array
Exercise: Can we extend this to normal binary tree, i.e., a binary tree represented using left and right pointers, and not necessarily complete?
Similar Reads
Binary Tree Data Structure A Binary Tree Data Structure is a hierarchical data structure in which each node has at most two children, referred to as the left child and the right child. It is commonly used in computer science for efficient storage and retrieval of data, with various operations such as insertion, deletion, and
3 min read
Introduction to Binary Tree Binary Tree is a non-linear and hierarchical data structure where each node has at most two children referred to as the left child and the right child. The topmost node in a binary tree is called the root, and the bottom-most nodes are called leaves. Introduction to Binary TreeRepresentation of Bina
15+ min read
Properties of Binary Tree This post explores the fundamental properties of a binary tree, covering its structure, characteristics, and key relationships between nodes, edges, height, and levelsBinary tree representationNote: Height of root node is considered as 0. Properties of Binary Trees1. Maximum Nodes at Level 'l'A bina
4 min read
Applications, Advantages and Disadvantages of Binary Tree A binary tree is a tree that has at most two children for any of its nodes. There are several types of binary trees. To learn more about them please refer to the article on "Types of binary tree" Applications:General ApplicationsDOM in HTML: Binary trees help manage the hierarchical structure of web
2 min read
Binary Tree (Array implementation) Given an array that represents a tree in such a way that array indexes are values in tree nodes and array values give the parent node of that particular index (or node). The value of the root node index would always be -1 as there is no parent for root. Construct the standard linked representation o
6 min read
Maximum Depth of Binary Tree Given a binary tree, the task is to find the maximum depth of the tree. The maximum depth or height of the tree is the number of edges in the tree from the root to the deepest node.Examples:Input: Output: 2Explanation: The longest path from the root (node 12) goes through node 8 to node 5, which has
11 min read
Insertion in a Binary Tree in level order Given a binary tree and a key, the task is to insert the key into the binary tree at the first position available in level order manner.Examples:Input: key = 12 Output: Explanation: Node with value 12 is inserted into the binary tree at the first position available in level order manner.Approach:The
8 min read
Deletion in a Binary Tree Given a binary tree, the task is to delete a given node from it by making sure that the tree shrinks from the bottom (i.e. the deleted node is replaced by the bottom-most and rightmost node). This is different from BST deletion. Here we do not have any order among elements, so we replace them with t
12 min read
Enumeration of Binary Trees A Binary Tree is labeled if every node is assigned a label and a Binary Tree is unlabelled if nodes are not assigned any label. Below two are considered same unlabelled trees o o / \ / \ o o o o Below two are considered different labelled trees A C / \ / \ B C A B How many different Unlabelled Binar
3 min read
Types of Binary Tree