Minimum number of deletions to make a sorted sequence
Last Updated :
07 Nov, 2023
Given an array of n integers. The task is to remove or delete the minimum number of elements from the array so that when the remaining elements are placed in the same sequence order to form an increasing sorted sequence.
Examples :
Input : {5, 6, 1, 7, 4}
Output : 2
Removing 1 and 4
leaves the remaining sequence order as
5 6 7 which is a sorted sequence.
Input : {30, 40, 2, 5, 1, 7, 45, 50, 8}
Output : 4
A simple solution is to remove all subsequences one by one and check if remaining set of elements is in sorted order or not. The time complexity of this solution is exponential.
An efficient approach uses the concept of finding the length of the longest increasing subsequence of a given sequence.
Algorithm:
-->arr be the given array.
-->n number of elements in arr.
-->len be the length of longest
increasing subsequence in arr.
-->// minimum number of deletions
min = n - len
C++
// C++ implementation to find
// minimum number of deletions
// to make a sorted sequence
#include <bits/stdc++.h>
using namespace std;
/* lis() returns the length
of the longest increasing
subsequence in arr[] of size n */
int lis( int arr[], int n )
{
int result = 0;
int lis[n];
/* Initialize LIS values
for all indexes */
for (int i = 0; i < n; i++ )
lis[i] = 1;
/* Compute optimized LIS
values in bottom up manner */
for (int i = 1; i < n; i++ )
for (int j = 0; j < i; j++ )
if ( arr[i] > arr[j] &&
lis[i] < lis[j] + 1)
lis[i] = lis[j] + 1;
/* Pick resultimum
of all LIS values */
for (int i = 0; i < n; i++ )
if (result < lis[i])
result = lis[i];
return result;
}
// function to calculate minimum
// number of deletions
int minimumNumberOfDeletions(int arr[],
int n)
{
// Find longest increasing
// subsequence
int len = lis(arr, n);
// After removing elements
// other than the lis, we
// get sorted sequence.
return (n - len);
}
// Driver Code
int main()
{
int arr[] = {30, 40, 2, 5, 1,
7, 45, 50, 8};
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Minimum number of deletions = "
<< minimumNumberOfDeletions(arr, n);
return 0;
}
Java
// Java implementation to find
// minimum number of deletions
// to make a sorted sequence
class GFG
{
/* lis() returns the length
of the longest increasing
subsequence in arr[] of size n */
static int lis( int arr[], int n )
{
int result = 0;
int[] lis = new int[n];
/* Initialize LIS values
for all indexes */
for (int i = 0; i < n; i++ )
lis[i] = 1;
/* Compute optimized LIS
values in bottom up manner */
for (int i = 1; i < n; i++ )
for (int j = 0; j < i; j++ )
if ( arr[i] > arr[j] &&
lis[i] < lis[j] + 1)
lis[i] = lis[j] + 1;
/* Pick resultimum of
all LIS values */
for (int i = 0; i < n; i++ )
if (result < lis[i])
result = lis[i];
return result;
}
// function to calculate minimum
// number of deletions
static int minimumNumberOfDeletions(int arr[],
int n)
{
// Find longest
// increasing subsequence
int len = lis(arr, n);
// After removing elements
// other than the lis, we get
// sorted sequence.
return (n - len);
}
// Driver Code
public static void main (String[] args)
{
int arr[] = {30, 40, 2, 5, 1,
7, 45, 50, 8};
int n = arr.length;
System.out.println("Minimum number of" +
" deletions = " +
minimumNumberOfDeletions(arr, n));
}
}
/* This code is contributed by Harsh Agarwal */
Python3
# Python3 implementation to find
# minimum number of deletions to
# make a sorted sequence
# lis() returns the length
# of the longest increasing
# subsequence in arr[] of size n
def lis(arr, n):
result = 0
lis = [0 for i in range(n)]
# Initialize LIS values
# for all indexes
for i in range(n):
lis[i] = 1
# Compute optimized LIS values
# in bottom up manner
for i in range(1, n):
for j in range(i):
if ( arr[i] > arr[j] and
lis[i] < lis[j] + 1):
lis[i] = lis[j] + 1
# Pick resultimum
# of all LIS values
for i in range(n):
if (result < lis[i]):
result = lis[i]
return result
# Function to calculate minimum
# number of deletions
def minimumNumberOfDeletions(arr, n):
# Find longest increasing
# subsequence
len = lis(arr, n)
# After removing elements
# other than the lis, we
# get sorted sequence.
return (n - len)
# Driver Code
arr = [30, 40, 2, 5, 1,
7, 45, 50, 8]
n = len(arr)
print("Minimum number of deletions = ",
minimumNumberOfDeletions(arr, n))
# This code is contributed by Anant Agarwal.
C#
// C# implementation to find
// minimum number of deletions
// to make a sorted sequence
using System;
class GfG
{
/* lis() returns the length of
the longest increasing subsequence
in arr[] of size n */
static int lis( int []arr, int n )
{
int result = 0;
int[] lis = new int[n];
/* Initialize LIS values for
all indexes */
for (int i = 0; i < n; i++ )
lis[i] = 1;
/* Compute optimized LIS values
in bottom up manner */
for (int i = 1; i < n; i++ )
for (int j = 0; j < i; j++ )
if ( arr[i] > arr[j] &&
lis[i] < lis[j] + 1)
lis[i] = lis[j] + 1;
/* Pick resultimum of all LIS
values */
for (int i = 0; i < n; i++ )
if (result < lis[i])
result = lis[i];
return result;
}
// function to calculate minimum
// number of deletions
static int minimumNumberOfDeletions(
int []arr, int n)
{
// Find longest increasing
// subsequence
int len = lis(arr, n);
// After removing elements other
// than the lis, we get sorted
// sequence.
return (n - len);
}
// Driver Code
public static void Main (String[] args)
{
int []arr = {30, 40, 2, 5, 1,
7, 45, 50, 8};
int n = arr.Length;
Console.Write("Minimum number of" +
" deletions = " +
minimumNumberOfDeletions(arr, n));
}
}
// This code is contributed by parashar.
JavaScript
<script>
// javascript implementation to find
// minimum number of deletions
// to make a sorted sequence
/* lis() returns the length
of the longest increasing
subsequence in arr[] of size n */
function lis(arr,n)
{
let result = 0;
let lis= new Array(n);
/* Initialize LIS values
for all indexes */
for (let i = 0; i < n; i++ )
lis[i] = 1;
/* Compute optimized LIS
values in bottom up manner */
for (let i = 1; i < n; i++ )
for (let j = 0; j < i; j++ )
if ( arr[i] > arr[j] &&
lis[i] < lis[j] + 1)
lis[i] = lis[j] + 1;
/* Pick resultimum
of all LIS values */
for (let i = 0; i < n; i++ )
if (result < lis[i])
result = lis[i];
return result;
}
// function to calculate minimum
// number of deletions
function minimumNumberOfDeletions(arr,n)
{
// Find longest increasing
// subsequence
let len = lis(arr,n);
// After removing elements
// other than the lis, we
// get sorted sequence.
return (n - len);
}
let arr = [30, 40, 2, 5, 1,7, 45, 50, 8];
let n = arr.length;
document.write("Minimum number of deletions = "
+ minimumNumberOfDeletions(arr,n));
// This code is contributed by vaibhavrabadiya117.
</script>
PHP
<?php
// PHP implementation to find
// minimum number of deletions
// to make a sorted sequence
/* lis() returns the length of
the longest increasing subsequence
in arr[] of size n */
function lis( $arr, $n )
{
$result = 0;
$lis[$n] = 0;
/* Initialize LIS values
for all indexes */
for ($i = 0; $i < $n; $i++ )
$lis[$i] = 1;
/* Compute optimized LIS
values in bottom up manner */
for ($i = 1; $i < $n; $i++ )
for ($j = 0; $j < $i; $j++ )
if ( $arr[$i] > $arr[$j] &&
$lis[$i] < $lis[$j] + 1)
$lis[$i] = $lis[$j] + 1;
/* Pick resultimum of
all LIS values */
for ($i = 0; $i < $n; $i++ )
if ($result < $lis[$i])
$result = $lis[$i];
return $result;
}
// function to calculate minimum
// number of deletions
function minimumNumberOfDeletions($arr, $n)
{
// Find longest increasing
// subsequence
$len = lis($arr, $n);
// After removing elements
// other than the lis, we
// get sorted sequence.
return ($n - $len);
}
// Driver Code
$arr = array(30, 40, 2, 5, 1,
7, 45, 50, 8);
$n = sizeof($arr) / sizeof($arr[0]);
echo "Minimum number of deletions = " ,
minimumNumberOfDeletions($arr, $n);
// This code is contributed by nitin mittal.
?>
OutputMinimum number of deletions = 4
Time Complexity : O(n2)
Auxiliary Space: O(n)
Time Complexity can be decreased to O(nlogn) by finding the Longest Increasing Subsequence Size(N Log N)
This article is contributed by Ayush Jauhari.
Approach#2: Using longest increasing subsequence
One approach to solve this problem is to find the length of the longest increasing subsequence (LIS) of the given array and subtract it from the length of the array. The difference gives us the minimum number of deletions required to make the array sorted.
Algorithm
1. Calculate the length of the longest increasing subsequence (LIS) of the array.
2. Subtract the length of the LIS from the length of the array.
3. Return the difference obtained in step 2 as the output.
C++
#include <iostream>
#include <vector>
#include <algorithm> // Required for max_element
using namespace std;
// Function to find the minimum number of deletions
int minDeletions(vector<int> arr) {
int n = arr.size();
vector<int> lis(n, 1); // Initialize LIS array with 1
// Calculate LIS values
for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (arr[i] > arr[j]) {
lis[i] = max(lis[i], lis[j] + 1); // Update LIS value
}
}
}
// Find the maximum length of LIS
int maxLength = *max_element(lis.begin(), lis.end());
// Return the minimum number of deletions
return n - maxLength;
}
//Driver code
int main() {
vector<int> arr = {5, 6, 1, 7, 4};
// Call the minDeletions function and print the result
cout << minDeletions(arr) << endl;
return 0;
}
Java
import java.util.Arrays;
public class Main {
public static int minDeletions(int[] arr) {
int n = arr.length;
int[] lis = new int[n];
Arrays.fill(lis, 1); // Initialize the LIS array with all 1's
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
if (arr[i] > arr[j]) {
lis[i] = Math.max(lis[i], lis[j] + 1);
}
}
}
return n - Arrays.stream(lis).max().getAsInt(); // Return the number of elements to delete
}
public static void main(String[] args) {
int[] arr = {5, 6, 1, 7, 4};
System.out.println(minDeletions(arr)); // Output: 2
}
}
Python3
def min_deletions(arr):
n = len(arr)
lis = [1] * n
for i in range(1, n):
for j in range(i):
if arr[i] > arr[j]:
lis[i] = max(lis[i], lis[j] + 1)
return n - max(lis)
arr = [5, 6, 1, 7, 4]
print(min_deletions(arr))
C#
using System;
using System.Collections.Generic;
using System.Linq;
namespace MinDeletionsExample
{
class Program
{
static int MinDeletions(List<int> arr)
{
int n = arr.Count;
List<int> lis = Enumerable.Repeat(1, n).ToList(); // Initialize LIS array with 1
// Calculate LIS values
for (int i = 1; i < n; ++i)
{
for (int j = 0; j < i; ++j)
{
if (arr[i] > arr[j])
{
lis[i] = Math.Max(lis[i], lis[j] + 1); // Update LIS value
}
}
}
// Find the maximum length of LIS
int maxLength = lis.Max();
// Return the minimum number of deletions
return n - maxLength;
}
// Driver Code
static void Main(string[] args)
{
List<int> arr = new List<int> { 5, 6, 1, 7, 4 };
// Call the MinDeletions function and print the result
Console.WriteLine(MinDeletions(arr));
// Keep console window open until a key is pressed
Console.ReadKey();
}
}
}
JavaScript
function minDeletions(arr) {
let n = arr.length;
let lis = new Array(n).fill(1);
for (let i = 1; i < n; i++) {
for (let j = 0; j < i; j++) {
if (arr[i] > arr[j]) {
lis[i] = Math.max(lis[i], lis[j] + 1);
}
}
}
return n - Math.max(...lis);
}
let arr = [5, 6, 1, 7, 4];
console.log(minDeletions(arr));
Time complexity: O(n^2), where n is length of array
Space complexity: O(n), where n is length of array
Approach#3: Using binary search
This approach uses binary search to find the correct position to insert a given element into the subsequence.
Algorithm
1. Initialize a list 'sub' with the first element of the input list.
2. For each subsequent element in the input list, if it is greater than the last element in 'sub', append it to 'sub'.
3. Otherwise, use binary search to find the correct position to insert the element into 'sub'.
4. The minimum number of deletions required is equal to the length of the input list minus the length of 'sub'.
C++
#include <iostream>
#include <vector>
using namespace std;
// Function to find the minimum number of deletions to make a strictly increasing subsequence
int minDeletions(vector<int>& arr) {
int n = arr.size();
vector<int> sub; // Stores the longest increasing subsequence
sub.push_back(arr[0]); // Initialize the subsequence with the first element of the array
for (int i = 1; i < n; i++) {
if (arr[i] > sub.back()) {
// If the current element is greater than the last element of the subsequence,
// it can be added to the subsequence to make it longer.
sub.push_back(arr[i]);
} else {
int index = -1; // Initialize index to -1
int val = arr[i]; // Current element value
int l = 0, r = sub.size() - 1; // Initialize left and right pointers for binary search
// Binary search to find the index where the current element can be placed in the subsequence
while (l <= r) {
int mid = (l + r) / 2; // Calculate the middle index
if (sub[mid] >= val) {
index = mid; // Update the index if the middle element is greater or equal to the current element
r = mid - 1; // Move the right pointer to mid - 1
} else {
l = mid + 1; // Move the left pointer to mid + 1
}
}
if (index != -1) {
sub[index] = val; // Replace the element at the found index with the current element
}
}
}
// The minimum number of deletions is equal to the difference between the input array size and the size of the longest increasing subsequence
return n - sub.size();
}
int main() {
vector<int> arr = {30, 40, 2, 5, 1, 7, 45, 50, 8};
int output = minDeletions(arr);
cout << output << endl;
return 0;
}
Java
import java.util.ArrayList;
public class Main {
// Function to find the minimum number of deletions to make a strictly increasing subsequence
static int minDeletions(ArrayList<Integer> arr) {
int n = arr.size();
ArrayList<Integer> sub = new ArrayList<>(); // Stores the longest increasing subsequence
sub.add(arr.get(0)); // Initialize the subsequence with the first element of the array
for (int i = 1; i < n; i++) {
if (arr.get(i) > sub.get(sub.size() - 1)) {
// If the current element is greater than the last element of the subsequence,
// it can be added to the subsequence to make it longer.
sub.add(arr.get(i));
} else {
int index = -1; // Initialize index to -1
int val = arr.get(i); // Current element value
int l = 0, r = sub.size() - 1; // Initialize left and right pointers for binary search
// Binary search to find the index where the current element can be placed in the subsequence
while (l <= r) {
int mid = (l + r) / 2; // Calculate the middle index
if (sub.get(mid) >= val) {
index = mid; // Update the index if the middle element is greater or equal to the current element
r = mid - 1; // Move the right pointer to mid - 1
} else {
l = mid + 1; // Move the left pointer to mid + 1
}
}
if (index != -1) {
sub.set(index, val); // Replace the element at the found index with the current element
}
}
}
// The minimum number of deletions is equal to the difference between the input array size and the size of the longest increasing subsequence
return n - sub.size();
}
public static void main(String[] args) {
ArrayList<Integer> arr = new ArrayList<>();
arr.add(30);
arr.add(40);
arr.add(2);
arr.add(5);
arr.add(1);
arr.add(7);
arr.add(45);
arr.add(50);
arr.add(8);
int output = minDeletions(arr);
System.out.println(output);
}
}
Python3
def min_deletions(arr):
def ceil_index(sub, val):
l, r = 0, len(sub)-1
while l <= r:
mid = (l + r) // 2
if sub[mid] >= val:
r = mid - 1
else:
l = mid + 1
return l
sub = [arr[0]]
for i in range(1, len(arr)):
if arr[i] > sub[-1]:
sub.append(arr[i])
else:
sub[ceil_index(sub, arr[i])] = arr[i]
return len(arr) - len(sub)
arr = [30, 40, 2, 5, 1, 7, 45, 50, 8]
output = min_deletions(arr)
print(output)
C#
using System;
using System.Collections.Generic;
class Program
{
// Function to find the minimum number of deletions to make a strictly increasing subsequence
static int MinDeletions(List<int> arr)
{
int n = arr.Count;
List<int> sub = new List<int>(); // Stores the longest increasing subsequence
sub.Add(arr[0]); // Initialize the subsequence with the first element of the array
for (int i = 1; i < n; i++)
{
if (arr[i] > sub[sub.Count - 1])
{
// If the current element is greater than the last element of the subsequence,
// it can be added to the subsequence to make it longer.
sub.Add(arr[i]);
}
else
{
int index = -1; // Initialize index to -1
int val = arr[i]; // Current element value
int l = 0, r = sub.Count - 1; // Initialize left and right
// pointers for binary search
// Binary search to find the index where the current element
// can be placed in the subsequence
while (l <= r)
{
int mid = (l + r) / 2; // Calculate the middle index
if (sub[mid] >= val)
{
index = mid; // Update the index if the middle element is
// greater or equal to the current element
r = mid - 1; // Move the right pointer to mid - 1
}
else
{
l = mid + 1; // Move the left pointer to mid + 1
}
}
if (index != -1)
{
sub[index] = val; // Replace the element at the found index
// with the current element
}
}
}
// The minimum number of deletions is equal to the difference
// between the input list size and the size of the
// longest increasing subsequence
return n - sub.Count;
}
// Driver code
static void Main()
{
List<int> arr = new List<int> { 30, 40, 2, 5, 1, 7, 45, 50, 8 };
int output = MinDeletions(arr);
Console.WriteLine(output);
Console.ReadLine();
}
}
JavaScript
// Function to find the minimum number of deletions to make a strictly increasing subsequence
function minDeletions(arr) {
let n = arr.length;
let sub = []; // Stores the longest increasing subsequence
sub.push(arr[0]); // Initialize the subsequence with the first element of the array
for (let i = 1; i < n; i++) {
if (arr[i] > sub[sub.length - 1]) {
// If the current element is greater than the last element of the subsequence,
// it can be added to the subsequence to make it longer.
sub.push(arr[i]);
} else {
let index = -1; // Initialize index to -1
let val = arr[i]; // Current element value
let l = 0, r = sub.length - 1; // Initialize left and right pointers for binary search
// Binary search to find the index where the current element can be placed
// in the subsequence
while (l <= r) {
let mid = Math.floor((l + r) / 2); // Calculate the middle index
if (sub[mid] >= val) {
index = mid; // Update the index if the middle element is greater
//or equal to the current element
r = mid - 1; // Move the right pointer to mid - 1
} else {
l = mid + 1; // Move the left pointer to mid + 1
}
}
if (index !== -1) {
sub[index] = val; // Replace the element at the found index with the current element
}
}
}
// The minimum number of deletions is equal to the difference
//between the input array size and the size of the longest increasing subsequence
return n - sub.length;
}
let arr = [30, 40, 2, 5, 1, 7, 45, 50, 8];
let output = minDeletions(arr);
console.log(output);
Time Complexity: O(n log n)
Auxiliary Space: O(n)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem