Minimum characters required to be removed to sort binary string in ascending order - Set 2
Last Updated :
23 Jul, 2025
Given binary string str of size N, the task is to remove the minimum number of characters from the given binary string such that the characters in the remaining string are in sorted order.
Examples:
Input: str = “1000101”
Output: 2
Explanation: Removal of the first two occurrences of ‘1’ modifies the string to “00001”, which is a sorted order. The string can also be made "00011" by performing 2 removals. Therefore, the minimum count of characters to be removed is 2.
Input: str = “001111”
Output: 0
Explanation: The string is already sorted. Therefore, the minimum count of character to be removed is 0.
Last Occurrence Approach: The optimized approach in linear time and constant space is discussed in Set 1 of this article. Here, we are discussing the Dynamic Programming Approach.
Dynamic Programming Approach: This problem can be solved using dynamic programming by observing the following facts, if K deletion is required to make the string sorted till ith index and
- Case1: S[i+1] = 1 then minimum number of deletions required to make string sorted till (i+1)th index will also be K as appending 1 to a sorted string will keep string sorted so no more deletion required.
- Case2: S[i + 1] = 0 then we have two way to make string sorted till (i+1)th index that are
- either delete all 1's before (i+1)th index, or
- delete current 0.
Minimum number of deletion to make string valid till (i+1)th index will be minimum of (numbers of 1's before (i+1)th index , K+1).
Follow the steps below to solve the problem:
- Initialize the variables count1 as 0 and N is the length of the string s.
- Initialize the vector dp[n+1] with values 0.
- Iterate over the range [0, n) using the variable i and perform the following tasks:
- If s[i] equals 0, then set dp[i+1] as the minimum of count1 or 1 + dp[i].
- Else, set dp[i+1] as dp[i] and increase the value of count1 by 1.
- After performing the above steps, print the value of dp[n] as the answer.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the minimum number
// of deletions to make
// the string sorted
int minDeletions(string s)
{
int n = s.size();
// dp[i+1] stores minimum number of
// deletion to make
// substring(0, i) valid
vector<int> dp(n + 1, 0);
int count1 = 0;
for (int i = 0; i < n; i++) {
if (s[i] == '0') {
// Case 1: remove current 0
// Case 2: keep current 0
// then delete all 1 before it
dp[i + 1] = min(count1, 1 + dp[i]);
}
else {
// Appending 1 is always valid
// if substring(0, i) is sorted
dp[i + 1] = dp[i];
count1++;
}
}
return dp[n];
}
// Driver Code
int main()
{
string s = "00101101";
cout << minDeletions(s);
return 0;
}
Java
// Java program for the above approach
import java.util.*;
public class GFG {
// Function to find the minimum number
// of deletions to make
// the string sorted
static int minDeletions(String s)
{
int n = s.length();
// dp[i+1] stores minimum number of
// deletion to make
// substring(0, i) valid
int[] dp = new int[n + 1];
for (int i = 0; i < n + 1; i++) {
dp[i] = 0;
}
int count1 = 0;
for (int i = 0; i < n; i++) {
if (s.charAt(i) == '0') {
// Case 1: remove current 0
// Case 2: keep current 0
// then delete all 1 before it
dp[i + 1] = Math.min(count1, 1 + dp[i]);
}
else {
// Appending 1 is always valid
// if substring(0, i) is sorted
dp[i + 1] = dp[i];
count1++;
}
}
return dp[n];
}
// Driver Code
public static void main(String args[])
{
String s = "00101101";
System.out.println(minDeletions(s));
}
}
// This code is contributed by Samim Hossain Mondal.
Python3
# Python code for the above approach
# Function to find the minimum number
# of deletions to make
# the string sorted
def minDeletions(s):
n = len(s)
# dp[i+1] stores minimum number of
# deletion to make
# substring(0, i) valid
dp = [0] * (n + 1)
count1 = 0
for i in range(n):
if (s[i] == '0'):
# Case 1: remove current 0
# Case 2: keep current 0
# then delete all 1 before it
dp[i + 1] = min(count1, 1 + dp[i])
else:
# Appending 1 is always valid
# if substring(0, i) is sorted
dp[i + 1] = dp[i]
count1 += 1
return dp[n]
# Driver Code
s = "00101101"
print(minDeletions(s))
# This code is contributed by Saurabh Jaiswal
C#
// C# program for the above approach
using System;
public class GFG {
// Function to find the minimum number
// of deletions to make
// the string sorted
static int minDeletions(string s)
{
int n = s.Length;
// dp[i+1] stores minimum number of
// deletion to make
// substring(0, i) valid
int[] dp = new int[n + 1];
for (int i = 0; i < n + 1; i++) {
dp[i] = 0;
}
int count1 = 0;
for (int i = 0; i < n; i++) {
if (s[i] == '0') {
// Case 1: remove current 0
// Case 2: keep current 0
// then delete all 1 before it
dp[i + 1] = Math.Min(count1, 1 + dp[i]);
}
else {
// Appending 1 is always valid
// if substring(0, i) is sorted
dp[i + 1] = dp[i];
count1++;
}
}
return dp[n];
}
// Driver Code
public static void Main()
{
string s = "00101101";
Console.Write(minDeletions(s));
}
}
// This code is contributed by Saurabh Jaiswal
JavaScript
<script>
// JavaScript code for the above approach
// Function to find the minimum number
// of deletions to make
// the string sorted
function minDeletions(s) {
let n = s.length;
// dp[i+1] stores minimum number of
// deletion to make
// substring(0, i) valid
let dp = new Array(n + 1).fill(0);
let count1 = 0;
for (let i = 0; i < n; i++) {
if (s[i] == '0') {
// Case 1: remove current 0
// Case 2: keep current 0
// then delete all 1 before it
dp[i + 1] = Math.min(count1,
1 + dp[i]);
}
else {
// Appending 1 is always valid
// if substring(0, i) is sorted
dp[i + 1] = dp[i];
count1++;
}
}
return dp[n];
}
// Driver Code
let s = "00101101";
document.write(minDeletions(s));
// This code is contributed by Potta Lokesh
</script>
Time Complexity: O(N)
Auxiliary Space: O(N)
Efficient Approach: Space Optimization Approach
In this approach we can improve the space complexity of the algorithm by using two variables to keep track of the minimum and maximum positions of the given element in the array instead of using a 2D vector dp. This will reduce the space complexity from O(N) to O(1).
Steps:
- Declare function minDeletions that take a string as an argument.
- Initialize the variable next and curr to 0 that refers to the current and previous element of dp.
- Now the approach is the same as the previous code but to optimize the space we change dp[i] to curr and dp[i+1] to next because dp[i] is only dependent on dp[i+1] and dp[i].
Implementation :
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the minimum number
// of deletions to make
// the string sorted
int minDeletions(string s)
{
int n = s.size();
int next = 0;
int curr = 0;
int count1 = 0;
for (int i = 0; i < n; i++) {
if (s[i] == '0') {
// Case 1: remove current 0
// Case 2: keep current 0
// then delete all 1 before it
next = min(count1, 1 + curr);
}
else {
// Appending 1 is always valid
// if substring(0, i) is sorted
next = curr;
count1++;
}
// assigning value of next element to current
// element and traverse further
curr = next;
}
return next;
}
// Driver Code
int main()
{
string s = "00101101";
cout << minDeletions(s);
return 0;
}
// this code is contributed by bhardwajji
Python3
# Function to find the minimum number
# of deletions to make the string sorted
def minDeletions(s: str) -> int:
n = len(s)
next, curr, count1 = 0, 0, 0
for i in range(n):
if s[i] == '0':
# Case 1: remove current 0
# Case 2: keep current 0
# then delete all 1 before it
next = min(count1, 1 + curr)
else:
# Appending 1 is always valid
# if substring(0, i) is sorted
next = curr
count1 += 1
# assigning value of next element to current
# element and traverse further
curr = next
return next
# Driver code
s = "00101101"
print(minDeletions(s))
C#
using System;
public class Gfg {
// Function to find the minimum number
// of deletions to make
// the string sorted
static int minDeletions(string s)
{
int n = s.Length;
int next = 0;
int curr = 0;
int count1 = 0;
for (int i = 0; i < n; i++) {
if (s[i] == '0') {
// Case 1: remove current 0
// Case 2: keep current 0
// then delete all 1 before it
next = Math.Min(count1, 1 + curr);
}
else {
// Appending 1 is always valid
// if substring(0, i) is sorted
next = curr;
count1++;
}
// assigning value of next element to current
// element and traverse further
curr = next;
}
return next;
}
// Driver Code
public static void Main()
{
string s = "00101101";
Console.WriteLine(minDeletions(s));
}
}
JavaScript
// Javascript program for the above approach
// Function to find the minimum number of deletions to make the string sorted
function minDeletions(s) {
let n = s.length;
let next = 0;
let curr = 0;
let count1 = 0;
for (let i = 0; i < n; i++) {
if (s[i] == '0') {
// Case 1: remove current 0
// Case 2: keep current 0 then delete all 1 before it
next = Math.min(count1,1 + curr);
} else {
// Appending 1 is always valid if substring(0, i) is sorted
next = curr;
count1++;
}
// assigning value of next element to current element and traverse further
curr = next;
}
return next;
}
// Test the code with an example value of s
let s = "00101101";
console.log(minDeletions(s));
Java
import java.util.*;
public class Main {
// Function to find the minimum number
// of deletions to make string sorted
public static int minDeletions(String s)
{
int n = s.length();
int next = 0;
int curr = 0;
int count1 = 0;
for (int i = 0; i < n; i++) {
if (s.charAt(i) == '0') {
// Case 1: remove current 0
// Case 2: keep current 0
// then delete all 1 before it
next = Math.min(count1, 1 + curr);
}
else {
// Appending 1 is always valid
// if substring(0, i) is sorted
next = curr;
count1++;
}
// assigning value of next element
// to current element and
// traverse further
curr = next;
}
return next;
}
// Driver Code
public static void main(String[] args)
{
String s = "00101101";
System.out.println(minDeletions(s));
}
}
Time Complexity: O(N)
Auxiliary Space: O(1)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem