Minimum Bitwise OR operations to make any two array elements equal
Last Updated :
18 Nov, 2021
Given an array arr[] of integers and an integer K, we can perform the Bitwise OR operation between any array element and K any number of times. The task is to print the minimum number of such operations required to make any two elements of the array equal. If it is not possible to make any two elements of the array equal after performing the above-mentioned operation then print -1.
Examples:
Input: arr[] = {1, 9, 4, 3}, K = 3
Output: 1
We can OR a[0] with x, which makes it 3 which is equal to a[3]
Input : arr[] = {13, 26, 21, 15}, K = 13
Output : -1
Approach: The key observation is that if it is possible to make the desired array then the answer will be either 0, 1 or 2. It will never exceed 2.
Because, if (x | k) = y
then, no matter how many times you perform (y | k)
it'll always give y as the result.
- The answer will be 0, if there are already equal elements in the array.
- For the answer to be 1, we will create a new array b[] which holds b[i] = (a[i] | K),
Now, for each a[i] we will check if there is any index j such that i != j and a[i] = b[j].
If yes, then the answer will be 1. - For the answer to be 2, we will check for an index i in the new array b[],
if there is any index j such that i != j and b[i] = b[j].
If yes, then the answer will be 2. - If any of the above conditions is not satisfied then the answer will be -1.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
// Function to return the count of
// minimum operations required
int minOperations(int a[], int n, int K)
{
unordered_map<int, bool> map;
for (int i = 0; i < n; i++) {
// Check if the initial array
// already contains an equal pair
if (map[a[i]])
return 0;
map[a[i]] = true;
}
// Create new array with OR operations
int b[n];
for (int i = 0; i < n; i++)
b[i] = a[i] | K;
// Clear the map
map.clear();
// Check if the solution
// is a single operation
for (int i = 0; i < n; i++) {
// If Bitwise OR operation between
// 'k' and a[i] gives
// a number other than a[i]
if (a[i] != b[i])
map[b[i]] = true;
}
// Check if any of the a[i]
// gets equal to any other element
// of the array after the operation
for (int i = 0; i < n; i++)
// Single operation
// will be enough
if (map[a[i]])
return 1;
// Clear the map
map.clear();
// Check if the solution
// is two operations
for (int i = 0; i < n; i++) {
// Check if the array 'b'
// contains duplicates
if (map[b[i]])
return 2;
map[b[i]] = true;
}
// Otherwise it is impossible to
// create such an array with
// Bitwise OR operations
return -1;
}
// Driver code
int main()
{
int K = 3;
int a[] = { 1, 9, 4, 3 };
int n = sizeof(a) / sizeof(a[0]);
// Function call to compute the result
cout << minOperations(a, n, K);
return 0;
}
Java
// Java implementation of the approach
import java.util.HashMap;
class GFG
{
// Function to return the count of
// minimum operations required
public static int minOperations(int[] a, int n, int K)
{
HashMap<Integer, Boolean> map = new HashMap<>();
for (int i = 0; i < n; i++)
{
// Check if the initial array
// already contains an equal pair
if (map.containsKey(a[i]))
return 0;
map.put(a[i], true);
}
// Create new array with OR operations
int[] b = new int[n];
for (int i = 0; i < n; i++)
b[i] = a[i] | K;
// Clear the map
map.clear();
// Check if the solution
// is a single operation
for (int i = 0; i < n; i++)
{
// If Bitwise OR operation between
// 'k' and a[i] gives
// a number other than a[i]
if (a[i] != b[i])
map.put(b[i], true);
}
// Check if any of the a[i]
// gets equal to any other element
// of the array after the operation
for (int i = 0; i < n; i++)
{
// Single operation
// will be enough
if (map.containsKey(a[i]))
return 1;
}
// Clear the map
map.clear();
// Check if the solution
// is two operations
for (int i = 0; i < n; i++)
{
// Check if the array 'b'
// contains duplicates
if (map.containsKey(b[i]))
return 2;
map.put(b[i], true);
}
// Otherwise it is impossible to
// create such an array with
// Bitwise OR operations
return -1;
}
// Driver code
public static void main(String[] args)
{
int K = 3;
int[] a = { 1, 9, 4, 3 };
int n = a.length;
System.out.println(minOperations(a, n, K));
}
}
// This code is contributed by
// sanjeev2552
Python3
# Python3 implementation of the approach
# Function to return the count of
# minimum operations required
def minOperations(a, n, K) :
map = dict.fromkeys(a,0) ;
for i in range(n) :
# Check if the initial array
# already contains an equal pair
if (map[a[i]]) :
return 0;
map[a[i]] = True;
# Create new array with OR operations
b = [0]*n;
for i in range(n) :
b[i] = a[i] | K;
# Clear the map
map.clear();
# Check if the solution
# is a single operation
for i in range(n) :
# If Bitwise OR operation between
# 'k' and a[i] gives
# a number other than a[i]
if (a[i] != b[i]) :
map[b[i]] = True;
# Check if any of the a[i]
# gets equal to any other element
# of the array after the operation
for i in range(n) :
# Single operation
# will be enough
if a[i] not in map :
pass
elif (map[a[i]]) :
return 1;
# Clear the map
map.clear();
# Check if the solution
# is two operations
for i in range(n) :
# Check if the array 'b'
# contains duplicates
if (map[b[i]]) :
return 2;
map[b[i]] = true;
# Otherwise it is impossible to
# create such an array with
# Bitwise OR operations
return -1;
# Driver code
if __name__ == "__main__" :
K = 3;
a = [ 1, 9, 4, 3 ];
n = len(a);
# Function call to compute the result
print(minOperations(a, n, K));
# This code is contributed by AnkitRai01
C#
// C# implementation of the approach
using System;
using System.Collections.Generic;
class GFG
{
// Function to return the count of
// minimum operations required
public static int minOperations(int[] a,
int n, int K)
{
Dictionary<int,
Boolean> map = new Dictionary<int,
Boolean>();
for (int i = 0; i < n; i++)
{
// Check if the initial array
// already contains an equal pair
if (map.ContainsKey(a[i]))
return 0;
map.Add(a[i], true);
}
// Create new array with OR operations
int[] b = new int[n];
for (int i = 0; i < n; i++)
b[i] = a[i] | K;
// Clear the map
map.Clear();
// Check if the solution
// is a single operation
for (int i = 0; i < n; i++)
{
// If Bitwise OR operation between
// 'k' and a[i] gives
// a number other than a[i]
if (a[i] != b[i])
map.Add(b[i], true);
}
// Check if any of the a[i]
// gets equal to any other element
// of the array after the operation
for (int i = 0; i < n; i++)
{
// Single operation
// will be enough
if (map.ContainsKey(a[i]))
return 1;
}
// Clear the map
map.Clear();
// Check if the solution
// is two operations
for (int i = 0; i < n; i++)
{
// Check if the array 'b'
// contains duplicates
if (map.ContainsKey(b[i]))
return 2;
map.Add(b[i], true);
}
// Otherwise it is impossible to
// create such an array with
// Bitwise OR operations
return -1;
}
// Driver code
public static void Main(String[] args)
{
int K = 3;
int[] a = { 1, 9, 4, 3 };
int n = a.Length;
Console.WriteLine(minOperations(a, n, K));
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// JavaScript implementation of the approach
// Function to return the count of
// minimum operations required
function minOperations(a, n, K) {
let map = new Map();
for (let i = 0; i < n; i++) {
// Check if the initial array
// already contains an equal pair
if (map.has(a[i]))
return 0;
map.set(a[i], true);
}
// Create new array with OR operations
let b = new Array(n);
for (let i = 0; i < n; i++)
b[i] = a[i] | K;
// Clear the map
map.clear();
// Check if the solution
// is a single operation
for (let i = 0; i < n; i++) {
// If Bitwise OR operation between
// 'k' and a[i] gives
// a number other than a[i]
if (a[i] != b[i])
map.set(b[i], true);
}
// Check if any of the a[i]
// gets equal to any other element
// of the array after the operation
for (let i = 0; i < n; i++)
// Single operation
// will be enough
if (map.has(a[i]))
return 1;
// Clear the map
map.clear();
// Check if the solution
// is two operations
for (let i = 0; i < n; i++) {
// Check if the array 'b'
// contains duplicates
if (map.has(b[i]))
return 2;
map.set(b[i], true);
}
// Otherwise it is impossible to
// create such an array with
// Bitwise OR operations
return -1;
}
// Driver code
let K = 3;
let a = [1, 9, 4, 3];
let n = a.length;
// Function call to compute the result
document.write(minOperations(a, n, K));
// This code is contributed by gfgking
</script>
Time Complexity: O(n)
Auxiliary Space: O(n)
Similar Reads
Bit Manipulation for Competitive Programming Bit manipulation is a technique in competitive programming that involves the manipulation of individual bits in binary representations of numbers. It is a valuable technique in competitive programming because it allows you to solve problems efficiently, often reducing time complexity and memory usag
15+ min read
Count set bits in an integer Write an efficient program to count the number of 1s in the binary representation of an integer.Examples : Input : n = 6Output : 2Binary representation of 6 is 110 and has 2 set bitsInput : n = 13Output : 3Binary representation of 13 is 1101 and has 3 set bits[Naive Approach] - One by One CountingTh
15+ min read
Count total set bits in first N Natural Numbers (all numbers from 1 to N) Given a positive integer n, the task is to count the total number of set bits in binary representation of all natural numbers from 1 to n. Examples: Input: n= 3Output: 4Explanation: Numbers from 1 to 3: {1, 2, 3}Binary Representation of 1: 01 -> Set bits = 1Binary Representation of 2: 10 -> Se
9 min read
Check whether the number has only first and last bits set Given a positive integer n. The problem is to check whether only the first and last bits are set in the binary representation of n.Examples: Input : 9 Output : Yes (9)10 = (1001)2, only the first and last bits are set. Input : 15 Output : No (15)10 = (1111)2, except first and last there are other bi
4 min read
Shortest path length between two given nodes such that adjacent nodes are at bit difference 2 Given an unweighted and undirected graph consisting of N nodes and two integers a and b. The edge between any two nodes exists only if the bit difference between them is 2, the task is to find the length of the shortest path between the nodes a and b. If a path does not exist between the nodes a and
7 min read
Calculate Bitwise OR of two integers from their given Bitwise AND and Bitwise XOR values Given two integers X and Y, representing Bitwise XOR and Bitwise AND of two positive integers, the task is to calculate the Bitwise OR value of those two positive integers.Examples:Input: X = 5, Y = 2 Output: 7 Explanation: If A and B are two positive integers such that A ^ B = 5, A & B = 2, the
7 min read
Unset least significant K bits of a given number Given an integer N, the task is to print the number obtained by unsetting the least significant K bits from N. Examples: Input: N = 200, K=5Output: 192Explanation: (200)10 = (11001000)2 Unsetting least significant K(= 5) bits from the above binary representation, the new number obtained is (11000000
4 min read
Find all powers of 2 less than or equal to a given number Given a positive number N, the task is to find out all the perfect powers of two which are less than or equal to the given number N. Examples: Input: N = 63 Output: 32 16 8 4 2 1 Explanation: There are total of 6 powers of 2, which are less than or equal to the given number N. Input: N = 193 Output:
6 min read
Powers of 2 to required sum Given an integer N, task is to find the numbers which when raised to the power of 2 and added finally, gives the integer N. Example : Input : 71307 Output : 0, 1, 3, 7, 9, 10, 12, 16 Explanation : 71307 = 2^0 + 2^1 + 2^3 + 2^7 + 2^9 + 2^10 + 2^12 + 2^16 Input : 1213 Output : 0, 2, 3, 4, 5, 7, 10 Exp
10 min read
Print bitwise AND set of a number N Given a number N, print all the numbers which are a bitwise AND set of the binary representation of N. Bitwise AND set of a number N is all possible numbers x smaller than or equal N such that N & i is equal to x for some number i. Examples : Input : N = 5Output : 0, 1, 4, 5 Explanation: 0 &
8 min read