Minimize sum of incompatibilities of K equal-length subsets made up of unique elements
Last Updated :
23 Jul, 2025
Given an array arr[] consisting of N integers and an integer K, the task is to find the minimum sum of incompatibilities of K subsets of equal sizes having unique elements.
The difference between the maximum and the minimum element in a set is known as the incompatibility of a set.
Examples:
Input: arr[] = {1, 2, 1, 4}, K = 2
Output: 4
Explanation:
One of the possible ways of distributing the array into K(i.e., 2) subsets is {1, 2} and {1, 4}.
The incompatibility of the first subset = (2 - 1) = 1.
The incompatibility of the second subset = (4 - 1) = 3.
Therefore, the total sum of incompatibilities of both subsets = 1 + 3 = 4, which is the minimum among all possibilities.
Input: arr[] = {6, 3, 8, 1, 3, 1, 2, 2}, K = 4
Output: 6
Explanation:
One of the possible ways of distributing the array into K subset is: {1, 2}, {2, 3}, {6, 8}, {1, 3}.
The incompatibility of the first subset = (2-1) = 1.
The incompatibility of the second subset = (3-2) = 1.
The incompatibility of the third subset = (8-6) = 2.
The incompatibility of the fourth subset = (3-1) = 2.
Therefore, total sum of incompatibilities of K subset = 1 + 1 + 2 + 2 = 6. And it is also the minimum among all possibilities
Naive Approach: The simplest approach is to traverse the given array recursively and in each recursion traverse over all possible ways of selecting N/K elements of the array using bitmask and calculate the incompatibility of that subset and then return the minimum among all.
Time Complexity: O(N*23*N)
Auxiliary Space: O(N)
Efficient Approach: The above approach can be optimized using dynamic programming. The given problem can be solved based on the following observations:
- It can be observed that it requires a 2 state Dynamic programming with Bitmasking say DP(mask, i) to solve the problem where i represents the current position of the array and each binary bit of mask represent if the element has been already selected or not.
- The transition state will include calculating the incompatibility by selecting a subset of size N/K.
- Suppose X and Y is minimum and maximum of current set and newmask is another variable with value initially as the mask
- Now, mark all the N/K elements that have been selected occurs only once in newmask then DP(mask, i) is calculated by (Y - X + min(DP(newmask, i + 1), DP(mask, i))).
Follow the steps below to solve the problem:
- Initialize a 2D array, say dp[][].
- Define a recursive function, say dfs (mask, i), to calculate the result:
- Base Case: If i > K, then return 0.
- Check if dp[mask][i] != -1, then return dp[mask][i] as the current state is already calculated.
- Select N/K elements from the array using bitmasking and if it possible to choose i elements of the subset which only occurs once and are not already part of other subsets, then update the current dp state as:
dp[mask][i] = min(dp[mask][i], Y - X + dfs(newmask, i))
- Return the value of dp[mask][i] as the result in the current recursive call.
- Call the recursive function dfs(2N-1, 0) and print the value returned by it.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
int k;
int n;
int goal;
vector<vector<int>> dp;
vector<int> bits;
// Recursive function to find
// the minimum required value
int dfs(vector<int> A, int state,int index)
{
// Base Case
if (index >= k)
{
return 0;
}
// Stores the minimum value
// of the current state
int res = 1000;
// If dp[state][index] is
// already calculated
if (dp[state][index] != -1) {
// return dp[state][index]
return dp[state][index];
}
// Traverse over all the bits
for (int bit : bits) {
// If count of set bit is N/K
if (__builtin_popcount(bit)
== goal) {
// Store the new state after
// choosing N/K elements
int newstate = state;
// Stores the minimum and
// maximum of current subset
int mn = 100, mx = -1;
// Stores if the elements
// have been already
// selected or not
vector<bool> visit(n+1,false);
// Stores if it is possible
// to select N/K elements
bool good = true;
// Traverse over the array
for (int j = 0; j < n; j++) {
// If not chosen already
// for another subset
if ((bit & (1 << j)) != 0) {
// If already chosen
// for another subset
// or current subset
if (visit[A[j]] == true
|| (state & (1 << j)) == 0) {
// Mark the good false
good = false;
break;
}
// Mark the current
// number visited
visit[A[j]] = true;
// Mark the current
// position in mask
// newstate
newstate = newstate
^ (1 << j);
// Update the maximum
// and minimum
mx = max(mx,
A[j]);
mn = min(mn,
A[j]);
}
}
// If good is true then
// Update the res
if (good) {
res = min(
res, mx - mn
+ dfs(A, newstate,
index + 1));
}
}
}
// Update the current sp state
dp[state][index] = res;
// Return the res
return res;
}
// Function to find the minimum
// incompatibility sum
int minimumIncompatibility(vector<int> A, int K)
{
n = A.size();
k = K;
goal = n / k;
// Stores the count of element
map<int, int> mp;
// Traverse the array
for (int i : A) {
// If number i not occurs
// in Map
if (mp.find(i)==mp.end()){
// Put the element
// in the Map
mp[i] = 0;
}
// Increment the count of
// i in the Hash Map
mp[i]++;
// If count of i in Map is
// greater than K then
// return -1
if (mp[i] > k)
return -1;
}
// Stores all total state
int state = (1 << n) - 1;
// Traverse over all the state
for (int i = 0; i <= state; i++) {
// If number of set bit
// is equal to N/K
if (__builtin_popcount(i) == goal){
bits.push_back(i);
}
}
// Stores the minimum value
// at a state
dp.resize(1<<n,vector<int>(k,-1));
// Initialize the dp state
// with -1
// for (int i = 0;
// i < dp.ize(); i++) {
// Arrays.fill(dp[i], -1);
// }
// Call the recursive function
return dfs(A, state, 0);
}
// Driver code
int main()
{
vector<int> arr = { 1, 2, 1, 4 };
int K = 2;
// Function Call
cout<<(minimumIncompatibility(arr, K));
}
// This code is contributed by mohit kumar 29.
Java
// Java program for the above approach
import java.io.*;
import java.util.*;
class Solution {
int k;
int n;
int goal;
int dp[][];
List<Integer> bits = new ArrayList<>();
// Function to find the minimum
// incompatibility sum
public int minimumIncompatibility(
int[] A, int k)
{
this.n = A.length;
this.k = k;
goal = n / k;
// Stores the count of element
Map<Integer, Integer> map
= new HashMap<>();
// Traverse the array
for (int i : A) {
// If number i not occurs
// in Map
if (!map.containsKey(i))
// Put the element
// in the Map
map.put(i, 0);
// Increment the count of
// i in the Hash Map
map.put(i, map.get(i) + 1);
// If count of i in Map is
// greater than K then
// return -1
if (map.get(i) > k)
return -1;
}
// Stores all total state
int state = (1 << n) - 1;
// Traverse over all the state
for (int i = 0; i <= state; i++) {
// If number of set bit
// is equal to N/K
if (Integer.bitCount(i) == goal)
bits.add(i);
}
// Stores the minimum value
// at a state
dp = new int[1 << n][k];
// Initialize the dp state
// with -1
for (int i = 0;
i < dp.length; i++) {
Arrays.fill(dp[i], -1);
}
// Call the recursive function
return dfs(A, state, 0);
}
// Recursive function to find
// the minimum required value
public int dfs(int A[], int state,
int index)
{
// Base Case
if (index >= k) {
return 0;
}
// Stores the minimum value
// of the current state
int res = 1000;
// If dp[state][index] is
// already calculated
if (dp[state][index] != -1) {
// return dp[state][index]
return dp[state][index];
}
// Traverse over all the bits
for (int bit : bits) {
// If count of set bit is N/K
if (Integer.bitCount(bit)
== goal) {
// Store the new state after
// choosing N/K elements
int newstate = state;
// Stores the minimum and
// maximum of current subset
int mn = 100, mx = -1;
// Stores if the elements
// have been already
// selected or not
boolean visit[]
= new boolean[n + 1];
// Stores if it is possible
// to select N/K elements
boolean good = true;
// Traverse over the array
for (int j = 0; j < n; j++) {
// If not chosen already
// for another subset
if ((bit & (1 << j)) != 0) {
// If already chosen
// for another subset
// or current subset
if (visit[A[j]] == true
|| (state & (1 << j)) == 0) {
// Mark the good false
good = false;
break;
}
// Mark the current
// number visited
visit[A[j]] = true;
// Mark the current
// position in mask
// newstate
newstate = newstate
^ (1 << j);
// Update the maximum
// and minimum
mx = Math.max(mx,
A[j]);
mn = Math.min(mn,
A[j]);
}
}
// If good is true then
// Update the res
if (good) {
res = Math.min(
res, mx - mn
+ dfs(A, newstate,
index + 1));
}
}
}
// Update the current sp state
dp[state][index] = res;
// Return the res
return res;
}
}
// Driver Code
class GFG {
public static void main(String[] args)
{
Solution st = new Solution();
int[] arr = { 1, 2, 1, 4 };
int K = 2;
// Function Call
System.out.print(
st.minimumIncompatibility(arr, K));
}
}
Python3
# Python program for the above approach:
k = 0
n = 0
goal = 0
dp = []
bits = []
def __builtin_popcount(n):
count = 0
while (n > 0):
count += (n & 1)
n >>= 1
return count
## Recursive function to find
## the minimum required value
def dfs(A, state, index):
global k
global n
global goal
global dp
global bits
## Base Case
if (index >= k):
return 0;
## Stores the minimum value
## of the current state
res = 1000
## If dp[state][index] is
## already calculated
if (dp[state][index] != -1):
## return dp[state][index]
return dp[state][index];
## Traverse over all the bits
for bit in bits:
## If count of set bit is N/K
if (__builtin_popcount(bit) == goal):
## Store the new state after
## choosing N/K elements
newstate = state;
## Stores the minimum and
## maximum of current subset
mn = 100
mx = -1
## Stores if the elements
## have been already
## selected or not
visit = [False]*(n+1)
## Stores if it is possible
## to select N/K elements
good = True
## Traverse over the array
for j in range(0, n):
## If not chosen already
## for another subset
if ((bit & (1 << j)) != 0):
## If already chosen
## for another subset
## or current subset
if (visit[A[j]] == True or (state & (1 << j)) == 0):
## Mark the good false
good = False;
break;
## Mark the current
## number visited
visit[A[j]] = True;
## Mark the current
## position in mask
## newstate
newstate = newstate ^ (1 << j);
## Update the maximum
## and minimum
mx = max(mx, A[j])
mn = min(mn, A[j])
## If good is True then
## Update the res
if (good):
res = min(res, mx - mn + dfs(A, newstate, index + 1))
## Update the current sp state
dp[state][index] = res
## Return the res
return res
## Function to find the minimum
## incompatibility sum
def minimumIncompatibility(A, K):
global k
global n
global goal
global dp
global bits
n = len(A)
k = K
goal = n // k
## Stores the count of element
mp = {}
## Traverse the array
for i in A:
## If number i not occurs
## in Map
if (i not in mp):
## Put the element
## in the Map
mp[i] = 0
## Increment the count of
## i in the Hash Map
mp[i]+=1
## If count of i in Map is
## greater than K then
## return -1
if (mp[i] > k):
return -1;
## Stores all total state
state = (1 << n) - 1;
## Traverse over all the state
for i in range(state + 1):
## If number of set bit
## is equal to N/K
if (__builtin_popcount(i) == goal):
bits.append(i)
## Stores the minimum value
## at a state
for i in range(1 << n):
dp.append([])
for j in range(k):
dp[i].append(-1)
## Call the recursive function
return dfs(A, state, 0);
## Driver code
if __name__=='__main__':
arr = [ 1, 2, 1, 4 ]
K = 2
## Function Call
print(minimumIncompatibility(arr, K))
# This code is contributed by subhamgoyal2014.
C#
// C# program for the above approach
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
class Solution {
int k;
int n;
int goal;
int [,]dp;
List<int> bits = new List<int>();
// Function to find the minimum
// incompatibility sum
public int minimumIncompatibility(
int[] A, int k)
{
this.n = A.Length;
this.k = k;
goal = n / k;
// Stores the count of element
Dictionary<int,int> map
= new Dictionary<int,int>();
// Traverse the array
foreach(int i in A) {
// If number i not occurs
// in Map
if (!map.ContainsKey(i))
// Put the element
// in the Map
map[i]= 0;
// Increment the count of
// i in the Hash Map
map[i]++;
// If count of i in Map is
// greater than K then
// return -1
if (map[i] > k)
return -1;
}
// Stores all total state
int state = (1 << n) - 1;
// Traverse over all the state
for (int i = 0; i <= state; i++) {
// If number of set bit
// is equal to N/K
if (Convert.ToString(i, 2).Count(c => c == '1') == goal)
bits.Add(i);
}
// Stores the minimum value
// at a state
dp = new int[1 << n,k];
// Initialize the dp state
// with -1
for (int i = 0;i < dp.GetLength(0); i++) {
for (int j = 0;j < dp.GetLength(1); j++) {
dp[i,j]=-1;
}
}
// Call the recursive function
return dfs(A, state, 0);
}
// Recursive function to find
// the minimum required value
public int dfs(int []A, int state,
int index)
{
// Base Case
if (index >= k) {
return 0;
}
// Stores the minimum value
// of the current state
int res = 1000;
// If dp[state][index] is
// already calculated
if (dp[state,index] != -1) {
// return dp[state][index]
return dp[state,index];
}
// Traverse over all the bits
foreach(int bit in bits) {
// If count of set bit is N/K
if(Convert.ToString(bit, 2).Count(c => c == '1')== goal) {
// Store the new state after
// choosing N/K elements
int newstate = state;
// Stores the minimum and
// maximum of current subset
int mn = 100, mx = -1;
// Stores if the elements
// have been already
// selected or not
bool []visit
= new bool[n + 1];
// Stores if it is possible
// to select N/K elements
bool good = true;
// Traverse over the array
for (int j = 0; j < n; j++) {
// If not chosen already
// for another subset
if ((bit & (1 << j)) != 0) {
// If already chosen
// for another subset
// or current subset
if (visit[A[j]] == true
|| (state & (1 << j)) == 0) {
// Mark the good false
good = false;
break;
}
// Mark the current
// number visited
visit[A[j]] = true;
// Mark the current
// position in mask
// newstate
newstate = newstate
^ (1 << j);
// Update the maximum
// and minimum
mx = Math.Max(mx,
A[j]);
mn = Math.Min(mn,
A[j]);
}
}
// If good is true then
// Update the res
if (good) {
res = Math.Min(
res, mx - mn
+ dfs(A, newstate,
index + 1));
}
}
}
// Update the current sp state
dp[state,index] = res;
// Return the res
return res;
}
}
// Driver Code
class GFG {
public static void Main()
{
Solution st = new Solution();
int[] arr = { 1, 2, 1, 4 };
int K = 2;
// Function Call
Console.Write(
st.minimumIncompatibility(arr, K));
}
}
// This code is contributed by rutvik_56.
JavaScript
<script>
// Javascript program for the above approach
let k,n,goal;
let dp;
let bits = [];
// Function to find the minimum
// incompatibility sum
function minimumIncompatibility(A,K)
{
n = A.length;
k = K;
goal = Math.floor(n / k);
// Stores the count of element
let map = new Map();
// Traverse the array
for (let i=0;i< A.length;i++) {
// If number i not occurs
// in Map
if (!map.has(A[i]))
// Put the element
// in the Map
map.set(A[i], 0);
// Increment the count of
// i in the Hash Map
map.set(A[i], map.get(A[i]) + 1);
// If count of i in Map is
// greater than K then
// return -1
if (map.get(A[i]) > k)
return -1;
}
// Stores all total state
let state = (1 << n) - 1;
// Traverse over all the state
for (let i = 0; i <= state; i++) {
// If number of set bit
// is equal to N/K
if (i.toString(2).split('0').join('').length == goal)
bits.push(i);
}
// Stores the minimum value
// at a state
dp = new Array(1 << n);
// Initialize the dp state
// with -1
for (let i = 0;
i < dp.length; i++) {
dp[i]=new Array(k);
for(let j=0;j<k;j++)
dp[i][j]=-1;
}
// Call the recursive function
return dfs(A, state, 0);
}
// Recursive function to find
// the minimum required value
function dfs(A,state,index)
{
// Base Case
if (index >= k) {
return 0;
}
// Stores the minimum value
// of the current state
let res = 1000;
// If dp[state][index] is
// already calculated
if (dp[state][index] != -1) {
// return dp[state][index]
return dp[state][index];
}
// Traverse over all the bits
for (let bit=0;bit< bits.length;bit++) {
// If count of set bit is N/K
if (bits[bit].toString(2).split('0').join('').length
== goal) {
// Store the new state after
// choosing N/K elements
let newstate = state;
// Stores the minimum and
// maximum of current subset
let mn = 100, mx = -1;
// Stores if the elements
// have been already
// selected or not
let visit
= new Array(n + 1);
for(let i=0;i<=n;i++)
{
visit[i]=false;
}
// Stores if it is possible
// to select N/K elements
let good = true;
// Traverse over the array
for (let j = 0; j < n; j++) {
// If not chosen already
// for another subset
if ((bits[bit] & (1 << j)) != 0) {
// If already chosen
// for another subset
// or current subset
if (visit[A[j]] == true
|| (state & (1 << j)) == 0) {
// Mark the good false
good = false;
break;
}
// Mark the current
// number visited
visit[A[j]] = true;
// Mark the current
// position in mask
// newstate
newstate = newstate
^ (1 << j);
// Update the maximum
// and minimum
mx = Math.max(mx,
A[j]);
mn = Math.min(mn,
A[j]);
}
}
// If good is true then
// Update the res
if (good) {
res = Math.min(
res, mx - mn
+ dfs(A, newstate,
index + 1));
}
}
}
// Update the current sp state
dp[state][index] = res;
// Return the res
return res;
}
// Driver Code
let arr=[1, 2, 1, 4];
let K = 2;
document.write(minimumIncompatibility(arr, K))
// This code is contributed by unknown2108
</script>
Time Complexity: O(N2*22*N)
Auxiliary Space: O(N)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem