Maximum weight path ending at any element of last row in a matrix
Last Updated :
23 Jul, 2025
Given a matrix of integers where every element represents the weight of the cell. Find the path having the maximum weight in matrix [N X N]. Path Traversal Rules are:
- It should begin from top left element.
- The path can end at any element of last row.
- We can move to follow two cells from a cell (i, j).
- Down Move : (i+1, j)
- Diagonal Move : (i+1, j+1)
Examples:
Input : N = 5
mat[5][5] = {{ 4, 2 ,3 ,4 ,1 },
{ 2 , 9 ,1 ,10 ,5 },
{15, 1 ,3 , 0 ,20 },
{16 ,92, 41, 44 ,1},
{8, 142, 6, 4, 8} };
Output : 255
Path with max weight : 4 + 2 +15 + 92 + 142 = 255
The above problem can be recursively defined.
Let maxCost(i, j) be the cost maximum cost to
reach mat[i][j]. Since end point can be any point
in last row, we finally return maximum of all values
maxCost(N-1, j) where j varies from 0 to N-1.
If i == 0 and j == 0
maxCost(0, 0) = mat[0][0]
// We can traverse through first column only by
// down move
Else if j = 0
maxCost(i, 0) = maxCost(i-1, 0) + mat[i][0]
// In other cases, a cell mat[i][j] can be reached
// through previous two cells ma[i-1][j] and
// mat[i-1][j-1]
Else
maxCost(i, j) = mat[i][j] + max(maxCost(i-1, j),
maxCost(i-1, j-1)),
If we draw the recursion tree of above recursive solution, we can observe overlapping subproblems. Since the problem has overlapping subproblems, we can solve it efficiently using Dynamic Programming. Below is Dynamic Programming based solution.
Implementation:
C++
// C++ program to find the path having the
// maximum weight in matrix
#include<bits/stdc++.h>
using namespace std;
const int MAX = 1000;
/* Function which return the maximum weight
path sum */
int maxCost(int mat[][MAX], int N)
{
// create 2D matrix to store the sum of the path
int dp[N][N];
memset(dp, 0, sizeof(dp));
dp[0][0] = mat[0][0];
// Initialize first column of total weight
// array (dp[i to N][0])
for (int i=1; i<N; i++)
dp[i][0] = mat[i][0] + dp[i-1][0];
// Calculate rest path sum of weight matrix
for (int i=1; i<N; i++)
for (int j=1; j<i+1&&j<N; j++)
dp[i][j] = mat[i][j] +
max(dp[i-1][j-1], dp[i-1][j]);
// find the max weight path sum to reach
// the last row
int result = 0;
for (int i=0; i<N; i++)
if (result < dp[N-1][i])
result = dp[N-1][i];
// return maximum weight path sum
return result;
}
// Driver program
int main()
{
int mat[MAX][MAX] = { { 4, 1 ,5 ,6 , 1 },
{ 2 ,9 ,2 ,11 ,10 },
{ 15,1 ,3 ,15, 2 },
{ 16, 92, 41,4,3},
{ 8, 142, 6, 4, 8 }
};
int N = 5;
cout << "Maximum Path Sum : "
<< maxCost(mat, N)<<endl;
return 0;
}
C
// C program to find the path having the
// maximum weight in matrix
#include <stdio.h>
#include <string.h>
#define MAX 1000
int max(int a, int b)
{
int max = a;
if(max<b)
max = b;
return max;
}
/* Function which return the maximum weight
path sum */
int maxCost(int mat[][MAX], int N)
{
// create 2D matrix to store the sum of the path
int dp[N][N];
memset(dp, 0, sizeof(dp));
dp[0][0] = mat[0][0];
// Initialize first column of total weight
// array (dp[i to N][0])
for (int i=1; i<N; i++)
dp[i][0] = mat[i][0] + dp[i-1][0];
// Calculate rest path sum of weight matrix
for (int i=1; i<N; i++)
for (int j=1; j<i+1&&j<N; j++)
dp[i][j] = mat[i][j] +
max(dp[i-1][j-1], dp[i-1][j]);
// find the max weight path sum to reach
// the last row
int result = 0;
for (int i=0; i<N; i++)
if (result < dp[N-1][i])
result = dp[N-1][i];
// return maximum weight path sum
return result;
}
// Driver program
int main()
{
int mat[MAX][MAX] = { { 4, 1 ,5 ,6 , 1 },
{ 2 ,9 ,2 ,11 ,10 },
{ 15,1 ,3 ,15, 2 },
{ 16, 92, 41,4,3},
{ 8, 142, 6, 4, 8 }
};
int N = 5;
printf("Maximum Path Sum : %d\n",maxCost(mat, N));
return 0;
}
// This code is contributed by kothavvsaakash.
Java
// Java Code for Maximum weight path ending at
// any element of last row in a matrix
import java.util.*;
class GFG {
/* Function which return the maximum weight
path sum */
public static int maxCost(int mat[][], int N)
{
// create 2D matrix to store the sum of
// the path
int dp[][]=new int[N][N];
dp[0][0] = mat[0][0];
// Initialize first column of total
// weight array (dp[i to N][0])
for (int i = 1; i < N; i++)
dp[i][0] = mat[i][0] + dp[i-1][0];
// Calculate rest path sum of weight matrix
for (int i = 1; i < N; i++)
for (int j = 1; j < i + 1 && j < N; j++)
dp[i][j] = mat[i][j] +
Math.max(dp[i-1][j-1],
dp[i-1][j]);
// find the max weight path sum to reach
// the last row
int result = 0;
for (int i = 0; i < N; i++)
if (result < dp[N-1][i])
result = dp[N-1][i];
// return maximum weight path sum
return result;
}
/* Driver program to test above function */
public static void main(String[] args)
{
int mat[][] = { { 4, 1 ,5 ,6 , 1 },
{ 2 ,9 ,2 ,11 ,10 },
{ 15,1 ,3 ,15, 2 },
{ 16, 92, 41,4,3},
{ 8, 142, 6, 4, 8 }
};
int N = 5;
System.out.println("Maximum Path Sum : "+
maxCost(mat, N));
}
}
// This code is contributed by Arnav Kr. Mandal.
Python3
# Python3 program to find the path
# having the maximum weight in matrix
MAX = 1000
# Function which return the
# maximum weight path sum
def maxCost(mat, N):
# create 2D matrix to store the sum of the path
dp = [[0 for i in range(N)] for j in range(N)]
dp[0][0] = mat[0][0]
# Initialize first column of total weight
# array (dp[i to N][0])
for i in range(1, N):
dp[i][0] = mat[i][0] + dp[i - 1][0]
# Calculate rest path sum of weight matrix
for i in range(1, N):
for j in range(1, min(i + 1, N)):
dp[i][j] = mat[i][j] + \
max(dp[i - 1][j - 1],
dp[i - 1][j])
# find the max weight path sum to reach
# the last row
result = 0
for i in range(N):
if (result < dp[N - 1][i]):
result = dp[N - 1][i]
# return maximum weight path sum
return result
# Driver Program
mat = [ [4, 1 ,5 ,6 , 1],
[2 ,9 ,2 ,11 ,10],
[15,1 ,3 ,15, 2],
[16, 92, 41,4,3],
[8, 142, 6, 4, 8]]
N = 5
print('Maximum Path Sum :', maxCost(mat, N))
# This code is contributed by Soumen Ghosh.
C#
// C# Code for Maximum weight path
// ending at any element of last
// row in a matrix
using System;
class GFG {
/* Function which return the
maximum weight path sum */
public static int maxCost(int [,] mat, int N)
{
// create 2D matrix to store the
// sum of the path
int [,] dp = new int[N,N];
dp[0,0] = mat[0,0];
// Initialize first column of total
// weight array (dp[i to N][0])
for (int i = 1; i < N; i++)
dp[i,0] = mat[i,0] + dp[i-1,0];
// Calculate rest path sum of weight matrix
for (int i = 1; i < N; i++)
for (int j = 1; j < i + 1 && j < N; j++)
dp[i,j] = mat[i,j] +
Math.Max(dp[i-1,j-1], dp[i-1,j]);
// find the max weight path sum to reach
// the last row
int result = 0;
for (int i = 0; i < N; i++)
if (result < dp[N-1,i])
result = dp[N-1,i];
// return maximum weight path sum
return result;
}
/* Driver program to test above function */
public static void Main()
{
int [,] mat = { { 4, 1 ,5 ,6 , 1 },
{ 2 ,9 ,2 ,11 ,10 },
{ 15,1 ,3 ,15, 2 },
{ 16, 92, 41,4,3},
{ 8, 142, 6, 4, 8 }
};
int N = 5;
Console.Write("Maximum Path Sum : "
+ maxCost(mat, N));
}
}
// This code is contributed by KRV.
PHP
<?php
// PHP program to find the path having the
// maximum weight in matrix
/* Function which return the maximum weight
path sum */
function maxCost($mat, $N)
{
// create 2D matrix to store the sum of the path
$dp = array(array()) ;
//memset(dp, 0, sizeof(dp));
$dp[0][0] = $mat[0][0];
// Initialize first column of total weight
// array (dp[i to N][0])
for ($i=1; $i<$N; $i++)
$dp[$i][0] = $mat[$i][0] + $dp[$i-1][0];
// Calculate rest path sum of weight matrix
for ($i=1; $i<$N; $i++) {
for ($j=1; $j<$i+1 && $j<$N; $j++)
$dp[$i][$j] = $mat[$i][$j] + max($dp[$i-1][$j-1], $dp[$i-1][$j]);
}
// find the max weight path sum to reach
// the last row
$result = 0;
for ($i=0; $i<$N; $i++)
if ($result < $dp[$N-1][$i])
$result = $dp[$N-1][$i];
// return maximum weight path sum
return $result;
}
// Driver program
$mat = array( array( 4, 1 ,5 ,6 , 1 ),
array( 2 ,9 ,2 ,11 ,10 ),
array( 15,1 ,3 ,15, 2 ),
array( 16, 92, 41,4,3),
array( 8, 142, 6, 4, 8 ) );
$N = 5;
echo "Maximum Path Sum : ", maxCost($mat, $N) ;
// This code is contributed by Ryuga
?>
JavaScript
<script>
// JavaScript Code for Maximum weight path ending at
// any element of last row in a matrix
/* Function which return the maximum weight
path sum */
function maxCost(mat, N)
{
// create 2D matrix to store the sum of
// the path
let dp = new Array(N);
for (let i = 0; i < N; i++)
{
dp[i] = new Array(N);
for (let j = 0; j < N; j++)
{
dp[i][j] = 0;
}
}
dp[0][0] = mat[0][0];
// Initialize first column of total
// weight array (dp[i to N][0])
for (let i = 1; i < N; i++)
dp[i][0] = mat[i][0] + dp[i-1][0];
// Calculate rest path sum of weight matrix
for (let i = 1; i < N; i++)
for (let j = 1; j < i + 1 && j < N; j++)
dp[i][j] = mat[i][j] +
Math.max(dp[i-1][j-1],
dp[i-1][j]);
// find the max weight path sum to reach
// the last row
let result = 0;
for (let i = 0; i < N; i++)
if (result < dp[N-1][i])
result = dp[N-1][i];
// return maximum weight path sum
return result;
}
let mat = [ [ 4, 1 ,5 ,6 , 1 ],
[ 2 ,9 ,2 ,11 ,10 ],
[ 15,1 ,3 ,15, 2 ],
[ 16, 92, 41,4,3],
[ 8, 142, 6, 4, 8 ]
];
let N = 5;
document.write("Maximum Path Sum : "+
maxCost(mat, N));
</script>
OutputMaximum Path Sum : 255
Time Complexity: O(N*N)
Auxiliary Space: O(N*N)
Method - 2 O(1) extra space solution
In the above solution, we use an extra dp array to store ans for a particular dp state but here we use input mat as dp so we don't need that extra N*N space so this solution works in O(1) space complexity.
C++
// C++ program to find the path having the maximum weight in matrix
#include<bits/stdc++.h>
using namespace std;
const int MAX = 1000;
// Function which return the maximum weight path sum
int maxCost(int mat[][MAX], int N) {
// Initialize first column of total weight array (dp[i to N][0])
for (int i = 1; i < N; i++)
mat[i][0] = mat[i][0] + mat[i - 1][0];
// Calculate rest path sum of weight matrix
for (int i = 1; i < N; i++) {
for (int j = 1; j < i + 1 && j < N; j++) {
mat[i][j] = mat[i][j] + max(mat[i - 1][j - 1], mat[i - 1][j]);
}
}
// find the max weight path sum to reach the last row
int result = 0;
for (int i = 0; i < N; i++) {
if (result < mat[N - 1][i]) {
result = mat[N - 1][i];
}
}
// return maximum weight path sum
return result;
}
// Driver program
int main()
{
int mat[MAX][MAX] = { { 4, 1 , 5 , 6 , 1 },
{ 2 , 9 , 2 , 11 , 10 },
{ 15, 1 , 3 , 15, 2 },
{ 16, 92, 41, 4, 3},
{ 8, 142, 6, 4, 8 }
};
int N = 5;
cout << "Maximum Path Sum : " << maxCost(mat, N) << endl;
return 0;
}
Java
// Java program to find the path having the maximum weight in matrix
import java.io.*;
class GFG {
public static int MAX = 1000;
// Function which return the maximum weight path sum
public static int maxCost(int mat[][], int N) {
// Initialize first column of total weight array (dp[i to N][0])
for (int i = 1; i < N; i++)
mat[i][0] = mat[i][0] + mat[i - 1][0];
// Calculate rest path sum of weight matrix
for (int i = 1; i < N; i++) {
for (int j = 1; j < i + 1 && j < N; j++) {
mat[i][j] = mat[i][j] + Math.max(mat[i - 1][j - 1], mat[i - 1][j]);
}
}
// find the max weight path sum to reach the last row
int result = 0;
for (int i = 0; i < N; i++) {
if (result < mat[N - 1][i]) {
result = mat[N - 1][i];
}
}
// return maximum weight path sum
return result;
}
public static void main(String[] args) {
int[][] mat = { { 4, 1 , 5 , 6 , 1 },
{ 2 , 9 , 2 , 11 , 10 },
{ 15, 1 , 3 , 15, 2 },
{ 16, 92, 41, 4, 3},
{ 8, 142, 6, 4, 8 }
};
int N = 5;
System.out.println("Maximum Path Sum : " + maxCost(mat, N));
}
}
// This code is contributed by ajaymakvana.
C#
// C# program to find the path having the maximum weight in
// matrix
using System;
class GFG
{
// Function which return the maximum weight path sum
static int maxCost(int[, ] mat, int N)
{
// Initialize first column of total weight array
// (dp[i to N][0])
for (int i = 1; i < N; i++)
mat[i, 0] = mat[i, 0] + mat[i - 1, 0];
// Calculate rest path sum of weight matrix
for (int i = 1; i < N; i++) {
for (int j = 1; j < i + 1 && j < N; j++) {
mat[i, j] = mat[i, j]
+ Math.Max(mat[i - 1, j - 1],
mat[i - 1, j]);
}
}
// find the max weight path sum to reach the last row
int result = 0;
for (int i = 0; i < N; i++) {
if (result < mat[N - 1, i]) {
result = mat[N - 1, i];
}
}
// return maximum weight path sum
return result;
}
static void Main()
{
int[, ] mat = { { 4, 1, 5, 6, 1 },
{ 2, 9, 2, 11, 10 },
{ 15, 1, 3, 15, 2 },
{ 16, 92, 41, 4, 3 },
{ 8, 142, 6, 4, 8 } };
int N = 5;
Console.Write("Maximum Path Sum : "
+ maxCost(mat, N));
}
}
// This code is contributed by garg28harsh.
JavaScript
// javascript program to find the path having the maximum weight in matrix
// Function which return the maximum weight path sum
function maxCost(mat, N) {
// Initialize first column of total weight array (dp[i to N][0])
for (let i = 1; i < N; i++)
mat[i][0] = mat[i][0] + mat[i - 1][0];
// Calculate rest path sum of weight matrix
for (let i = 1; i < N; i++) {
for (let j = 1; j < i + 1 && j < N; j++) {
mat[i][j] = mat[i][j] + Math.max(mat[i - 1][j - 1], mat[i - 1][j]);
}
}
// find the max weight path sum to reach the last row
let result = 0;
for (let i = 0; i < N; i++) {
if (result < mat[N - 1][i]) {
result = mat[N - 1][i];
}
}
// return maximum weight path sum
return result;
}
// Driver program
let mat = [[ 4, 1 , 5 , 6 , 1 ],
[ 2 , 9 , 2 , 11 , 10 ],
[ 15, 1 , 3 , 15, 2],
[ 16, 92, 41, 4, 3],
[ 8, 142, 6, 4, 8 ]];
let N = 5;
console.log("Maximum Path Sum : " + maxCost(mat, N)) ;
// This code is contributed by garg28harsh.
Python3
# Python program to find the path having the maximum weight in matrix
# Function which return the maximum weight path sum
def maxCost(mat, N):
# Initialize first column of total weight array (dp[i to N][0])
for i in range(1, N):
mat[i][0] = mat[i][0] + mat[i-1][0]
# Calculate rest path sum of weight matrix
for i in range(1, N):
for j in range(1, i+1):
mat[i][j] = mat[i][j] + max(mat[i-1][j-1], mat[i - 1][j])
# find the max weight path sum to reach the last row
result = 0
for i in range(N):
if result < mat[N-1][i]:
result = mat[N-1][i]
# return maximum weight path sum
return result
# Driver program
if __name__ == "__main__":
mat = [[4, 1, 5, 6, 1],
[2, 9, 2, 11, 10],
[15, 1, 3, 15, 2],
[16, 92, 41, 4, 3],
[8, 142, 6, 4, 8]
]
N = 5
print("Maximum Path Sum: ", maxCost(mat, N))
OutputMaximum Path Sum : 255
Time Complexity : O(N*N)
Auxiliary Space: O(1)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem