Open In App

Maximum value after merging all elements in the array

Last Updated : 30 Mar, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array a of size N. The task is to merge all elements in the array and find the maximum possible value. One can merge two elements in the array as explained below.
 

If i and j are two indexes of the array(i ≠ j). Merging jth element into ith element makes a[i] as a[i] - a[j] and remove a[j] from the array.


Examples:
 

Input : a[] = {2 1 2 1} (n == 4) 
Output :
Merge 3rd element into 2nd element then the array becomes {2, -1, 1} 
Merge 3rd element into 2nd element then the array becomes {2, -2} 
Merge 2nd element into 1st element then the array becomes {4}
Input: a[] = {1, 3, 5, -2, -6} 
Output: 17 
Merge 4th element into 3rd element then the array becomes {1, 3, -7, -6} 
Merge 2nd element into 3rd element then the array becomes {1, -10, -6} 
Merge 2nd element into 1st element then the array becomes {11, -6} 
Merge 2nd element into 1st element then the array becomes {17} 
 


Approach: 
 

  • If the array contains both positive and negative elements, then add absolute value all elements of the array
  • If the array contains the only positive elements. Then subtract the least element from the summation of all other elements
  • If the array contains the only negative elements. First, replace all elements with their absolute values. Then subtract the least element from the summation of all other elements


Below is the implementation of the above approach: 
 

C++
// CPP program to maximum value after 
// merging all elements in the array
#include <bits/stdc++.h>
using namespace std;

// Function to maximum value after 
// merging all elements in the array
int Max_sum(int a[], int n)
{
    // To check if positive and negative 
    // elements present or not
    int pos = 0, neg = 0;
    
    for(int i = 0; i < n; i++)
    {
        // Check for positive integer
        if(a[i] > 0)
            pos = 1;
            
        // Check for negative integer
        else if(a[i] < 0)
            neg = 1;
            
        // If both positive and negative
        // elements are present
        if(pos == 1 and neg == 1)
            break;
    }
    
    // To store maximum value possible
    int sum = 0;
    
    if(pos==1 and neg==1)
    {
        for(int i=0; i < n ; i++)
            sum += abs(a[i]);
    }
    
    else if(pos == 1)
    {
        // To find minimum value
        int mini = a[0];
        sum = a[0];
        for(int i=1; i < n; i++)
        {
            mini = min(mini, a[i]);
            sum += a[i];
        }    
        
        // Remove minimum element
        sum -= 2*mini;
    }    
    
    else if(neg == 1)
    {
        // Replace with absolute values
        for(int i = 0; i < n; i++)
            a[i] = abs(a[i]);
            
        // To find minimum value
        int mini = a[0];
        sum = a[0];
        for(int i=1; i < n; i++)
        {
            mini = min(mini, a[i]);
            sum += a[i];
        }    
        
        // Remove minimum element
        sum -= 2*mini;
        
    }
    
    // Return the required sum
    return sum;
}

// Driver code
int main()
{
    int a[] = {1, 3, 5, -2, -6};
    
    int n = sizeof(a) / sizeof(a[0]);
    
    // Function call
    cout << Max_sum(a, n);
    
    return 0;
}
Java
// Java program to maximum value after 
// merging all elements in the array
import java.io.*;

class GFG 
{
    
// Function to maximum value after 
// merging all elements in the array
static int Max_sum(int a[], int n)
{
    // To check if positive and negative 
    // elements present or not
    int pos = 0, neg = 0;
    
    for(int i = 0; i < n; i++)
    {
        // Check for positive integer
        if(a[i] > 0)
            pos = 1;
            
        // Check for negative integer
        else if(a[i] < 0)
            neg = 1;
            
        // If both positive and negative
        // elements are present
        if((pos == 1) && (neg == 1))
            break;
    }
    
    // To store maximum value possible
    int sum = 0;
    
    if((pos == 1) && (neg == 1))
    {
        for(int i = 0; i < n ; i++)
            sum += Math.abs(a[i]);
    }
    
    else if(pos == 1)
    {
        // To find minimum value
        int mini = a[0];
        sum = a[0];
        for(int i = 1; i < n; i++)
        {
            mini = Math.min(mini, a[i]);
            sum += a[i];
        } 
        
        // Remove minimum element
        sum -= 2*mini;
    } 
    
    else if(neg == 1)
    {
        // Replace with absolute values
        for(int i = 0; i < n; i++)
            a[i] = Math.abs(a[i]);
            
        // To find minimum value
        int mini = a[0];
        sum = a[0];
        for(int i = 1; i < n; i++)
        {
            mini = Math.min(mini, a[i]);
            sum += a[i];
        } 
        
        // Remove minimum element
        sum -= 2*mini;
        
    }
    
    // Return the required sum
    return sum;
}

// Driver code
public static void main (String[] args)
{

    int []a = {1, 3, 5, -2, -6};
    int n = a.length;
    // Function call
    System.out.println (Max_sum(a, n));
}
}

// This code is contributed by ajit.
Python3
# Python 3 program to maximum value after 
# merging all elements in the array

# Function to maximum value after 
# merging all elements in the array
def Max_sum(a, n):
    # To check if positive and negative 
    # elements present or not
    pos = 0
    neg = 0
    
    for i in range(n):
        # Check for positive integer
        if(a[i] > 0):
            pos = 1
            
        # Check for negative integer
        elif(a[i] < 0):
            neg = 1
            
        # If both positive and negative
        # elements are present
        if(pos == 1 and neg == 1):
            break
    
    # To store maximum value possible
    sum = 0
    
    if(pos==1 and neg==1):
        for i in range(n):
            sum += abs(a[i])
    
    elif(pos == 1):
        # To find minimum value
        mini = a[0]
        sum = a[0]
        for i in range(1,n,1):
            mini = min(mini, a[i])
            sum += a[i] 
        
        # Remove minimum element
        sum -= 2*mini
    
    elif(neg == 1):
        # Replace with absolute values
        for i in range(n):
            a[i] = abs(a[i])
            
        # To find minimum value
        mini = a[0]
        sum = a[0]
        for i in range(1,n):
            mini = min(mini, a[i])
            sum += a[i] 
        
        # Remove minimum element
        sum -= 2*mini
           
    # Return the required sum
    return sum

# Driver code
if __name__ == '__main__':
    a = [1, 3, 5, -2, -6]
    
    n = len(a)
    
    # Function call
    print(Max_sum(a, n))

# This code is contributed by
# Surendra_Gangwar
C#
// C# program to maximum value after 
// merging all elements in the array 
using System;

class GFG
{

    // Function to maximum value after 
    // merging all elements in the array 
    static int Max_sum(int[] a, int n)
    {
        // To check if positive and negative 
        // elements present or not 
        int pos = 0, neg = 0;

        for (int i = 0; i < n; i++)
        {
            // Check for positive integer 
            if (a[i] > 0)
                pos = 1;

            // Check for negative integer 
            else if (a[i] < 0)
                neg = 1;

            // If both positive and negative 
            // elements are present 
            if ((pos == 1) && (neg == 1))
                break;
        }

        // To store maximum value possible 
        int sum = 0;

        if ((pos == 1) && (neg == 1))
        {
            for (int i = 0; i < n; i++)
                sum += Math.Abs(a[i]);
        }

        else if (pos == 1)
        {
            // To find minimum value 
            int mini = a[0];
            sum = a[0];
            for (int i = 1; i < n; i++)
            {
                mini = Math.Min(mini, a[i]);
                sum += a[i];
            }

            // Remove minimum element 
            sum -= 2 * mini;
        }

        else if (neg == 1)
        {
            // Replace with absolute values 
            for (int i = 0; i < n; i++)
                a[i] = Math.Abs(a[i]);

            // To find minimum value 
            int mini = a[0];
            sum = a[0];
            for (int i = 1; i < n; i++)
            {
                mini = Math.Min(mini, a[i]);
                sum += a[i];
            }

            // Remove minimum element 
            sum -= 2 * mini;

        }

        // Return the required sum 
        return sum;
    }

    // Driver code 
    public static void Main(String[] args)
    {

        int[] a = { 1, 3, 5, -2, -6 };
        int n = a.Length;
        
        // Function call 
        Console.WriteLine(Max_sum(a, n));
    }
}

// This code is contributed by
// sanjeev2552
JavaScript
<script>
// Javascript program to maximum value after 
// merging all elements in the array

// Function to maximum value after 
// merging all elements in the array
function Max_sum(a, n)
{
    // To check if positive and negative 
    // elements present or not
    let pos = 0, neg = 0;
    
    for(let i = 0; i < n; i++)
    {
        // Check for positive integer
        if(a[i] > 0)
            pos = 1;
            
        // Check for negative integer
        else if(a[i] < 0)
            neg = 1;
            
        // If both positive and negative
        // elements are present
        if(pos == 1 && neg == 1)
            break;
    }
    
    // To store maximum value possible
    let sum = 0;
    
    if(pos==1 && neg==1)
    {
        for(let i=0; i < n ; i++)
            sum += Math.abs(a[i]);
    }
    
    else if(pos == 1)
    {
        // To find minimum value
        let mini = a[0];
        sum = a[0];
        for(let i=1; i < n; i++)
        {
            mini = Math.min(mini, a[i]);
            sum += a[i];
        }    
        
        // Remove minimum element
        sum -= 2*mini;
    }    
    
    else if(neg == 1)
    {
        // Replace with absolute values
        for(let i = 0; i < n; i++)
            a[i] = Math.abs(a[i]);
            
        // To find minimum value
        let mini = a[0];
        sum = a[0];
        for(let i=1; i < n; i++)
        {
            mini = Math.min(mini, a[i]);
            sum += a[i];
        }    
        
        // Remove minimum element
        sum -= 2*mini;
        
    }
    
    // Return the required sum
    return sum;
}

// Driver code
    let a = [1, 3, 5, -2, -6];
    
    let n = a.length;
    
    // Function call
    document.write(Max_sum(a, n));

</script>

Output: 
 

17


Time Complexity: O(n)

Auxiliary Space: O(1)


Next Article
Article Tags :
Practice Tags :

Similar Reads