Prerequisite: Kadane's algorithm
Given a 2D array arr[][] of dimension N*M, the task is to find the maximum sum sub-matrix from the matrix arr[][].
Examples:
Input: arr[][] = {{0, -2, -7, 0 }, { 9, 2, -6, 2 }, { -4, 1, -4, 1 }, { -1, 8, 0, -2}}
Output: 15
Explanation: The submatrix {{9, 2}, {-4, 1}, {-1, 8}} has a sum 15, which is the maximum sum possible.
Input: arr[][] = {{1, 2}, {-5, -7}}
Output: 3
Naive Approach: The simplest approach is to generate all possible submatrices from the given matrix and calculate their sum. Finally, print the maximum sum obtained.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find maximum sum submatrix
void maxSubmatrixSum(
vector<vector<int> > matrix)
{
// Stores the number of rows
// and columns in the matrix
int r = matrix.size();
int c = matrix[0].size();
// Stores maximum submatrix sum
int maxSubmatrix = 0;
// Take each row as starting row
for (int i = 0; i < r; i++) {
// Take each column as the
// starting column
for (int j = 0; j < c; j++) {
// Take each row as the
// ending row
for (int k = i; k < r; k++) {
// Take each column as
// the ending column
for (int l = j; l < c; l++) {
// Stores the sum of submatrix
// having topleft index(i, j)
// and bottom right index (k, l)
int sumSubmatrix = 0;
// Iterate the submatrix
// row-wise and calculate its sum
for (int m = i; m <= k; m++) {
for (int n = j; n <= l; n++) {
sumSubmatrix += matrix[m][n];
}
}
// Update the maximum sum
maxSubmatrix
= max(maxSubmatrix,
sumSubmatrix);
}
}
}
}
// Print the answer
cout << maxSubmatrix;
}
// Driver Code
int main()
{
vector<vector<int> > matrix = { { 0, -2, -7, 0 },
{ 9, 2, -6, 2 },
{ -4, 1, -4, 1 },
{ -1, 8, 0, -2 } };
maxSubmatrixSum(matrix);
return 0;
}
Java
// Java program for the above approach
import java.util.*;
class GFG
{
// Function to find maximum sum submatrix
static void maxSubmatrixSum(int[][] matrix)
{
// Stores the number of rows
// and columns in the matrix
int r = matrix.length;
int c = matrix[0].length;
// Stores maximum submatrix sum
int maxSubmatrix = 0;
// Take each row as starting row
for (int i = 0; i < r; i++) {
// Take each column as the
// starting column
for (int j = 0; j < c; j++) {
// Take each row as the
// ending row
for (int k = i; k < r; k++) {
// Take each column as
// the ending column
for (int l = j; l < c; l++) {
// Stores the sum of submatrix
// having topleft index(i, j)
// and bottom right index (k, l)
int sumSubmatrix = 0;
// Iterate the submatrix
// row-wise and calculate its sum
for (int m = i; m <= k; m++) {
for (int n = j; n <= l; n++) {
sumSubmatrix += matrix[m][n];
}
}
// Update the maximum sum
maxSubmatrix
= Math.max(maxSubmatrix,
sumSubmatrix);
}
}
}
}
// Print the answer
System.out.println(maxSubmatrix);
}
// Driver Code
public static void main(String[] args)
{
int[][] matrix = { { 0, -2, -7, 0 },
{ 9, 2, -6, 2 },
{ -4, 1, -4, 1 },
{ -1, 8, 0, -2 } };
maxSubmatrixSum(matrix);
}
}
// This code is contributed by susmitakundugoaldanga.
Python3
# Python3 program for the above approach
# Function to find maximum sum submatrix
def maxSubmatrixSum(matrix):
# Stores the number of rows
# and columns in the matrix
r = len(matrix)
c = len(matrix[0])
# Stores maximum submatrix sum
maxSubmatrix = 0
# Take each row as starting row
for i in range(r):
# Take each column as the
# starting column
for j in range(c):
# Take each row as the
# ending row
for k in range(i, r):
# Take each column as
# the ending column
for l in range(j, c):
# Stores the sum of submatrix
# having topleft index(i, j)
# and bottom right index (k, l)
sumSubmatrix = 0
# Iterate the submatrix
# row-wise and calculate its sum
for m in range(i, k + 1):
for n in range(j, l + 1):
sumSubmatrix += matrix[m][n]
# Update the maximum sum
maxSubmatrix= max(maxSubmatrix, sumSubmatrix)
# Print the answer
print (maxSubmatrix)
# Driver Code
if __name__ == '__main__':
matrix = [ [ 0, -2, -7, 0 ],
[ 9, 2, -6, 2 ],
[ -4, 1, -4, 1 ],
[ -1, 8, 0, -2 ] ]
maxSubmatrixSum(matrix)
# This code is contributed by mohit kumar 29.
C#
// C# program to implement
// the above approach
using System;
public class GFG
{
// Function to find maximum sum submatrix
static void maxSubmatrixSum(int[,] matrix)
{
// Stores the number of rows
// and columns in the matrix
int r = matrix.GetLength(0);
int c = matrix.GetLength(1);
// Stores maximum submatrix sum
int maxSubmatrix = 0;
// Take each row as starting row
for (int i = 0; i < r; i++) {
// Take each column as the
// starting column
for (int j = 0; j < c; j++) {
// Take each row as the
// ending row
for (int k = i; k < r; k++) {
// Take each column as
// the ending column
for (int l = j; l < c; l++) {
// Stores the sum of submatrix
// having topleft index(i, j)
// and bottom right index (k, l)
int sumSubmatrix = 0;
// Iterate the submatrix
// row-wise and calculate its sum
for (int m = i; m <= k; m++) {
for (int n = j; n <= l; n++) {
sumSubmatrix += matrix[m, n];
}
}
// Update the maximum sum
maxSubmatrix
= Math.Max(maxSubmatrix,
sumSubmatrix);
}
}
}
}
// Print the answer
Console.WriteLine(maxSubmatrix);
}
// Driver Code
public static void Main(String []args)
{
int[,] matrix = { { 0, -2, -7, 0 },
{ 9, 2, -6, 2 },
{ -4, 1, -4, 1 },
{ -1, 8, 0, -2 } };
maxSubmatrixSum(matrix);
}
}
// This code is contributed by sanjoy_62.
JavaScript
<script>
// Javascript program for the above approach
// Function to find maximum sum submatrix
function maxSubmatrixSum(matrix)
{
// Stores the number of rows
// and columns in the matrix
var r = matrix.length;
var c = matrix[0].length;
// Stores maximum submatrix sum
var maxSubmatrix = 0;
// Take each row as starting row
for (i = 0; i < r; i++) {
// Take each column as the
// starting column
for (j = 0; j < c; j++) {
// Take each row as the
// ending row
for (k = i; k < r; k++) {
// Take each column as
// the ending column
for (l = j; l < c; l++) {
// Stores the sum of submatrix
// having topleft index(i, j)
// and bottom right index (k, l)
var sumSubmatrix = 0;
// Iterate the submatrix
// row-wise and calculate its sum
for (m = i; m <= k; m++) {
for (n = j; n <= l; n++) {
sumSubmatrix += matrix[m][n];
}
}
// Update the maximum sum
maxSubmatrix = Math.max(maxSubmatrix,
sumSubmatrix);
}
}
}
}
// Print the answer
document.write(maxSubmatrix);
}
// Driver Code
var matrix = [ [ 0, -2, -7, 0 ],
[ 9, 2, -6, 2 ],
[ -4, 1, -4, 1 ],
[ -1, 8, 0, -2 ] ];
maxSubmatrixSum(matrix);
// This code contributed by umadevi9616
</script>
Time Complexity: O(N6)
Auxiliary Space: O(1)
Efficient Approach using Kadane's Algorithm: The above approach can be optimized using the following observations:
- Fix starting and ending column of the required sub-matrix say start and end respectively.
- Now, iterate each row and add row sum from starting to ending column to sumSubmatrix and insert this in an array. After iterating each row, perform Kadane's Algorithm on this newly created array. If the sum obtained by applying Kadane's algorithm is greater than the overall maximum sum, update the overall maximum sum.
- In the above step, the row sum from starting to ending column can be calculated in constant time by creating an auxiliary matrix of size N*M containing the prefix sum of each row.
Follow the steps below to solve the problem:
- Initialize a variable, say maxSum as INT_MIN, to store the maximum subarray sum.
- Create a matrix prefMatrix[N][M] that stores the prefix array sum of every row of the given matrix.
- Traverse the matrix row-wise using i as the row index and j as the column index and perform the following steps:
- If the value of i is 0, then set prefMatrix[i][j] = A[i][j].
- Otherwise, set prefMatrix[i][j] = prefMatrix[i][j - 1] + A[i][j].
- Now for all possible combinations of starting and ending index of the columns of submatrix over the range [0, M] perform the following steps:
- Initialize an auxiliary array A[] to stores the maximum sum for each row of the current submatrix.
- Find the sum from starting to ending column using prefMatrix as follows:
- If the value of start is positive, then store the required sum S as prefMatrix[i][end] - prefMatrix[i][start - 1].
- Otherwise, update S as prefMatrix[i][end].
- Insert S in an array arr[].
- After iterating all rows in the submatrix, perform Kadane's algorithm on the array A[] and update the maximum sum maxSum as the maximum of maxSum and value obtained by performing the Kadane's Algorithm in this step.
- After completing the above steps, print the value of maxSum as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find maximum continuous
// maximum sum in the array
int kadane(vector<int> v)
{
// Stores current and maximum sum
int currSum = 0;
int maxSum = INT_MIN;
// Traverse the array v
for (int i = 0;
i < (int)v.size(); i++) {
// Add the value of the
// current element
currSum += v[i];
// Update the maximum sum
if (currSum > maxSum) {
maxSum = currSum;
}
if (currSum < 0) {
currSum = 0;
}
}
// Return the maximum sum
return maxSum;
}
// Function to find the maximum
// submatrix sum
void maxSubmatrixSum(
vector<vector<int> > A)
{
// Store the rows and columns
// of the matrix
int r = A.size();
int c = A[0].size();
// Create an auxiliary matrix
int** prefix = new int*[r];
// Traverse the matrix, prefix
// and initialize it will all 0s
for (int i = 0; i < r; i++) {
prefix[i] = new int[c];
for (int j = 0; j < c; j++) {
prefix[i][j] = 0;
}
}
// Calculate prefix sum of all
// rows of matrix A[][] and
// store in matrix prefix[]
for (int i = 0; i < r; i++) {
for (int j = 0; j < c; j++) {
// Update the prefix[][]
if (j == 0)
prefix[i][j] = A[i][j];
else
prefix[i][j] = A[i][j]
+ prefix[i][j - 1];
}
}
// Store the maximum submatrix sum
int maxSum = INT_MIN;
// Iterate for starting column
for (int i = 0; i < c; i++) {
// Iterate for last column
for (int j = i; j < c; j++) {
// To store current array
// elements
vector<int> v;
// Traverse every row
for (int k = 0; k < r; k++) {
// Store the sum of the
// kth row
int el = 0;
// Update the prefix
// sum
if (i == 0)
el = prefix[k][j];
else
el = prefix[k][j]
- prefix[k][i - 1];
// Push it in a vector
v.push_back(el);
}
// Update the maximum
// overall sum
maxSum = max(maxSum, kadane(v));
}
}
// Print the answer
cout << maxSum << "\n";
}
// Driver Code
int main()
{
vector<vector<int> > matrix = { { 0, -2, -7, 0 },
{ 9, 2, -6, 2 },
{ -4, 1, -4, 1 },
{ -1, 8, 0, -2 } };
// Function Call
maxSubmatrixSum(matrix);
return 0;
}
Java
// Java program for the above approach
import java.util.*;
class GFG{
// Function to find maximum continuous
// maximum sum in the array
static int kadane(Vector<Integer> v)
{
// Stores current and maximum sum
int currSum = 0;
int maxSum = Integer.MIN_VALUE;
// Traverse the array v
for (int i = 0;
i < (int)v.size(); i++)
{
// Add the value of the
// current element
currSum += v.get(i);
// Update the maximum sum
if (currSum > maxSum)
{
maxSum = currSum;
}
if (currSum < 0)
{
currSum = 0;
}
}
// Return the maximum sum
return maxSum;
}
// Function to find the maximum
// submatrix sum
static void maxSubmatrixSum(int [][]A)
{
// Store the rows and columns
// of the matrix
int r = A.length;
int c = A[0].length;
// Create an auxiliary matrix
int [][]prefix = new int[r][];
// Traverse the matrix, prefix
// and initialize it will all 0s
for (int i = 0; i < r; i++) {
prefix[i] = new int[c];
for (int j = 0; j < c; j++) {
prefix[i][j] = 0;
}
}
// Calculate prefix sum of all
// rows of matrix A[][] and
// store in matrix prefix[]
for (int i = 0; i < r; i++) {
for (int j = 0; j < c; j++) {
// Update the prefix[][]
if (j == 0)
prefix[i][j] = A[i][j];
else
prefix[i][j] = A[i][j]
+ prefix[i][j - 1];
}
}
// Store the maximum submatrix sum
int maxSum = Integer.MIN_VALUE;
// Iterate for starting column
for (int i = 0; i < c; i++) {
// Iterate for last column
for (int j = i; j < c; j++) {
// To store current array
// elements
Vector<Integer> v = new Vector<Integer>();
// Traverse every row
for (int k = 0; k < r; k++) {
// Store the sum of the
// kth row
int el = 0;
// Update the prefix
// sum
if (i == 0)
el = prefix[k][j];
else
el = prefix[k][j]
- prefix[k][i - 1];
// Push it in a vector
v.add(el);
}
// Update the maximum
// overall sum
maxSum = Math.max(maxSum, kadane(v));
}
}
// Print the answer
System.out.print(maxSum+ "\n");
}
// Driver Code
public static void main(String[] args)
{
int [][]matrix = { { 0, -2, -7, 0 },
{ 9, 2, -6, 2 },
{ -4, 1, -4, 1 },
{ -1, 8, 0, -2 } };
// Function Call
maxSubmatrixSum(matrix);
}
}
// This code is contributed by 29AjayKumar
Python3
# Python3 program for the above approach
import sys
# Function to find maximum continuous
# maximum sum in the array
def kadane(v):
# Stores current and maximum sum
currSum = 0
maxSum = -sys.maxsize - 1
# Traverse the array v
for i in range(len(v)):
# Add the value of the
# current element
currSum += v[i]
# Update the maximum sum
if (currSum > maxSum):
maxSum = currSum
if (currSum < 0):
currSum = 0
# Return the maximum sum
return maxSum
# Function to find the maximum
# submatrix sum
def maxSubmatrixSum(A):
# Store the rows and columns
# of the matrix
r = len(A)
c = len(A[0])
# Create an auxiliary matrix
# Traverse the matrix, prefix
# and initialize it will all 0s
prefix = [[0 for i in range(c)]
for j in range(r)]
# Calculate prefix sum of all
# rows of matrix A[][] and
# store in matrix prefix[]
for i in range(r):
for j in range(c):
# Update the prefix[][]
if (j == 0):
prefix[i][j] = A[i][j]
else:
prefix[i][j] = A[i][j] + prefix[i][j - 1]
# Store the maximum submatrix sum
maxSum = -sys.maxsize - 1
# Iterate for starting column
for i in range(c):
# Iterate for last column
for j in range(i, c):
# To store current array
# elements
v = []
# Traverse every row
for k in range(r):
# Store the sum of the
# kth row
el = 0
# Update the prefix
# sum
if (i == 0):
el = prefix[k][j]
else:
el = prefix[k][j] - prefix[k][i - 1]
# Push it in a vector
v.append(el)
# Update the maximum
# overall sum
maxSum = max(maxSum, kadane(v))
# Print the answer
print(maxSum)
# Driver Code
matrix = [ [ 0, -2, -7, 0 ],
[ 9, 2, -6, 2 ],
[ -4, 1, -4, 1 ],
[ -1, 8, 0, -2 ] ]
# Function Call
maxSubmatrixSum(matrix)
# This code is contributed by rag2127
C#
// C# program for the above approach
using System;
using System.Collections.Generic;
public class GFG{
// Function to find maximum continuous
// maximum sum in the array
static int kadane(List<int> v)
{
// Stores current and maximum sum
int currSum = 0;
int maxSum = int.MinValue;
// Traverse the array v
for (int i = 0;
i < (int)v.Count; i++)
{
// Add the value of the
// current element
currSum += v[i];
// Update the maximum sum
if (currSum > maxSum)
{
maxSum = currSum;
}
if (currSum < 0)
{
currSum = 0;
}
}
// Return the maximum sum
return maxSum;
}
// Function to find the maximum
// submatrix sum
static void maxSubmatrixSum(int [,]A)
{
// Store the rows and columns
// of the matrix
int r = A.GetLength(0);
int c = A.GetLength(1);
// Create an auxiliary matrix
int [,]prefix = new int[r,c];
// Traverse the matrix, prefix
// and initialize it will all 0s
for (int i = 0; i < r; i++) {
for (int j = 0; j < c; j++) {
prefix[i,j] = 0;
}
}
// Calculate prefix sum of all
// rows of matrix [,]A and
// store in matrix prefix[]
for (int i = 0; i < r; i++) {
for (int j = 0; j < c; j++) {
// Update the prefix[,]
if (j == 0)
prefix[i,j] = A[i,j];
else
prefix[i,j] = A[i,j]
+ prefix[i,j - 1];
}
}
// Store the maximum submatrix sum
int maxSum = int.MinValue;
// Iterate for starting column
for (int i = 0; i < c; i++) {
// Iterate for last column
for (int j = i; j < c; j++) {
// To store current array
// elements
List<int> v = new List<int>();
// Traverse every row
for (int k = 0; k < r; k++) {
// Store the sum of the
// kth row
int el = 0;
// Update the prefix
// sum
if (i == 0)
el = prefix[k,j];
else
el = prefix[k,j]
- prefix[k,i - 1];
// Push it in a vector
v.Add(el);
}
// Update the maximum
// overall sum
maxSum = Math.Max(maxSum, kadane(v));
}
}
// Print the answer
Console.Write(maxSum+ "\n");
}
// Driver Code
public static void Main(String[] args)
{
int [,]matrix = { { 0, -2, -7, 0 },
{ 9, 2, -6, 2 },
{ -4, 1, -4, 1 },
{ -1, 8, 0, -2 } };
// Function Call
maxSubmatrixSum(matrix);
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// Javascript program for the above approach
// Function to find maximum continuous
// maximum sum in the array
function kadane(v)
{
// Stores current and maximum sum
let currSum = 0;
let maxSum = Number.MIN_VALUE;
// Traverse the array v
for (let i = 0;
i < v.length; i++)
{
// Add the value of the
// current element
currSum += v[i];
// Update the maximum sum
if (currSum > maxSum)
{
maxSum = currSum;
}
if (currSum < 0)
{
currSum = 0;
}
}
// Return the maximum sum
return maxSum;
}
// Function to find the maximum
// submatrix sum
function maxSubmatrixSum(A)
{
// Store the rows and columns
// of the matrix
let r = A.length;
let c = A[0].length;
// Create an auxiliary matrix
let prefix = new Array(r);
// Traverse the matrix, prefix
// and initialize it will all 0s
for (let i = 0; i < r; i++) {
prefix[i] = new Array(c);
for (let j = 0; j < c; j++) {
prefix[i][j] = 0;
}
}
// Calculate prefix sum of all
// rows of matrix A[][] and
// store in matrix prefix[]
for (let i = 0; i < r; i++) {
for (let j = 0; j < c; j++) {
// Update the prefix[][]
if (j == 0)
prefix[i][j] = A[i][j];
else
prefix[i][j] = A[i][j]
+ prefix[i][j - 1];
}
}
// Store the maximum submatrix sum
let maxSum = Number.MIN_VALUE;
// Iterate for starting column
for (let i = 0; i < c; i++) {
// Iterate for last column
for (let j = i; j < c; j++) {
// To store current array
// elements
let v = [];
// Traverse every row
for (let k = 0; k < r; k++) {
// Store the sum of the
// kth row
let el = 0;
// Update the prefix
// sum
if (i == 0)
el = prefix[k][j];
else
el = prefix[k][j]
- prefix[k][i - 1];
// Push it in a vector
v.push(el);
}
// Update the maximum
// overall sum
maxSum = Math.max(maxSum, kadane(v));
}
}
// Print the answer
document.write(maxSum+ "<br>");
}
// Driver Code
let matrix=[[ 0, -2, -7, 0 ],
[ 9, 2, -6, 2 ],
[ -4, 1, -4, 1 ],
[ -1, 8, 0, -2 ]];
// Function Call
maxSubmatrixSum(matrix);
// This code is contributed by unknown2108
</script>
Time Complexity: O(N3)
Auxiliary Space: O(N2)
Related Topic: Subarrays, Subsequences, and Subsets in Array
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem