Open In App

Maximum sum of non-overlapping subarrays of length atmost K

Last Updated : 19 Apr, 2023
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an integer array 'arr' of length N and an integer 'k', select some non-overlapping subarrays such that each sub-array if of length at most 'k', no two sub-arrays are adjacent and sum of all the elements of the selected sub-arrays are maximum.
Examples: 
 

Input : arr[] = {-1, 2, -3, 4, 5}, k = 2
Output : 11
Sub-arrays that maximizes sum will be {{2}, {4, 5}}.
Thus, the answer will be 2+4+5 = 11.

Input :arr[] = {1, 1, 1, 1, 1}, k = 1
Output : 3


 


Naive Approach : A simple way is to generate all possible subsets of elements satisfying above conditions recursively and find the subset with maximum sum. 
Time Complexity : O(2N
Efficient Approach: A better approach is to use dynamic programming.
Let's suppose we are at an index 'i'. 
Let dp[i] be defined as the maximum sum of elements of all possible subsets of sub-array {i, n-1} satisfying above conditions.
We will have 'K+1' possible choices i.e.
 

  1. Reject 'i' and solve for 'i+1'.
  2. Select sub-array {i} and solve for 'i+2'
  3. Select sub-array {i, i+1} and solve for 'i+3'


Thus, recurrence relation will be: 
 

dp[i] = max(dp[i+1], arr[i]+dp[i+2], arr[i]+arr[i+1]+dp[i+3],
        ...arr[i]+arr[i+1]+arr[i+2]...+arr[i+k-1] + dp[i+k+1])


Below is the implementation of the above approach: 
 

C++
// C++ program to implement above approach
#include <bits/stdc++.h>
#define maxLen 10
using namespace std;

// Variable to store states of dp
int dp[maxLen];

// Variable to check if a given state has been solved
bool visit[maxLen];

// Function to find the maximum sum subsequence
// such that no two elements are adjacent
int maxSum(int arr[], int i, int n, int k)
{
    // Base case
    if (i >= n)
        return 0;

    // To check if a state has been solved
    if (visit[i])
        return dp[i];
    visit[i] = 1;

    // Variable to store
    // prefix sum for sub-array
    // {i, j}
    int tot = 0;
    dp[i] = maxSum(arr, i + 1, n, k);

    // Required recurrence relation
    for (int j = i; j < i + k and j < n; j++) {
        tot += arr[j];
        dp[i] = max(dp[i], tot +
                     maxSum(arr, j + 2, n, k));
    }

    // Returning the value
    return dp[i];
}

// Driver code
int main()
{
    // Input array
    int arr[] = { -1, 2, -3, 4, 5 };

    int k = 2;

    int n = sizeof(arr) / sizeof(int);

    cout << maxSum(arr, 0, n, k);

    return 0;
}
Java
// Java program to implement above approach
import java.io.*;

class GFG
{
    
    static int maxLen = 10;
    
    // Variable to store states of dp
    static int dp[] = new int[maxLen];
    
    // Variable to check 
    // if a given state has been solved
    static boolean []visit = new boolean[maxLen];
    
    // Function to find the maximum sum subsequence
    // such that no two elements are adjacent
    static int maxSum(int arr[], int i, 
                    int n, int k)
    {
        // Base case
        if (i >= n)
            return 0;
    
        // To check if a state has been solved
        if (visit[i])
            return dp[i];
        visit[i] = true;
    
        // Variable to store
        // prefix sum for sub-array
        // {i, j}
        int tot = 0;
        dp[i] = maxSum(arr, i + 1, n, k);
    
        // Required recurrence relation
        for (int j = i; j < (i + k) &&
                            (j < n); j++)
        {
            tot += arr[j];
            dp[i] = Math.max(dp[i], tot +
                    maxSum(arr, j + 2, n, k));
        }
    
        // Returning the value
        return dp[i];
    }

    // Driver code
    public static void main (String[] args) 
    {

        // Input array
        int arr[] = { -1, 2, -3, 4, 5 };
        
        int k = 2;
        
        int n = arr.length;
        
        System.out.println(maxSum(arr, 0, n, k));
    }
}

// This code is contributed by ajit.
Python3
# Python3 program to implement above approach 
maxLen = 10

# Variable to store states of dp 
dp = [0]*maxLen; 

# Variable to check if a given state has been solved 
visit = [0]*maxLen; 

# Function to find the maximum sum subsequence 
# such that no two elements are adjacent 
def maxSum(arr, i, n, k) : 

    # Base case 
    if (i >= n) :
        return 0; 

    # To check if a state has been solved 
    if (visit[i]) : 
        return dp[i]; 
        
    visit[i] = 1; 

    # Variable to store 
    # prefix sum for sub-array 
    # {i, j} 
    tot = 0; 
    dp[i] = maxSum(arr, i + 1, n, k); 

    # Required recurrence relation 
    j = i
    while (j < i + k and j < n) :
        tot += arr[j]; 
        dp[i] = max(dp[i], tot +
                    maxSum(arr, j + 2, n, k)); 
                    
        j += 1
    
    # Returning the value 
    return dp[i]; 


# Driver code 
if __name__ == "__main__" : 

    # Input array 
    arr = [ -1, 2, -3, 4, 5 ]; 

    k = 2; 

    n = len(arr); 

    print(maxSum(arr, 0, n, k)); 
    
# This code is contributed by AnkitRai01
C#
// C# program to implement above approach
using System;

class GFG
{
static int maxLen = 10;

// Variable to store states of dp
static int []dp = new int[maxLen];

// Variable to check 
// if a given state has been solved
static bool []visit = new bool[maxLen];

// Function to find the maximum sum subsequence
// such that no two elements are adjacent
static int maxSum(int []arr, int i, 
                  int n, int k)
{
    // Base case
    if (i >= n)
        return 0;

    // To check if a state has been solved
    if (visit[i])
        return dp[i];
    visit[i] = true;

    // Variable to store
    // prefix sum for sub-array
    // {i, j}
    int tot = 0;
    dp[i] = maxSum(arr, i + 1, n, k);

    // Required recurrence relation
    for (int j = i; j < (i + k) &&
                        (j < n); j++)
    {
        tot += arr[j];
        dp[i] = Math.Max(dp[i], tot +
                  maxSum(arr, j + 2, n, k));
    }

    // Returning the value
    return dp[i];
}

// Driver code
static public void Main ()
{

    // Input array
    int []arr = { -1, 2, -3, 4, 5 };
    
    int k = 2;
    
    int n = arr.Length;
    
    Console.WriteLine (maxSum(arr, 0, n, k));
}
}

// This code is contributed by ajit.
JavaScript
<script>
    // Javascript program to implement above approach
    
    let maxLen = 10;
  
    // Variable to store states of dp
    let dp = new Array(maxLen);

    // Variable to check 
    // if a given state has been solved
    let visit = new Array(maxLen);

    // Function to find the maximum sum subsequence
    // such that no two elements are adjacent
    function maxSum(arr, i, n, k)
    {
        // Base case
        if (i >= n)
            return 0;

        // To check if a state has been solved
        if (visit[i])
            return dp[i];
        visit[i] = true;

        // Variable to store
        // prefix sum for sub-array
        // {i, j}
        let tot = 0;
        dp[i] = maxSum(arr, i + 1, n, k);

        // Required recurrence relation
        for (let j = i; j < (i + k) &&
                            (j < n); j++)
        {
            tot += arr[j];
            dp[i] = Math.max(dp[i], tot +
                      maxSum(arr, j + 2, n, k));
        }

        // Returning the value
        return dp[i];
    }
    
    // Input array
    let arr = [ -1, 2, -3, 4, 5 ];
      
    let k = 2;
      
    let n = arr.length;
      
    document.write(maxSum(arr, 0, n, k));

</script>

Output: 
11

 

Time Complexity: O(n*k) 
 Space complexity: O(n)

Efficient approach : Using DP Tabulation method ( Iterative approach )

The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.

Steps to solve this problem :

  • Create a 1D DP of size n to store the solution of the subproblems.
  • Initialize the DP  with 0.
  • Now Iterate over subproblems to get the value of current problem form previous computation of subproblems stored in DP
  • Create a variable res and to store the final result and update it by iterating through Dp. 
  • Return the final solution stored in res

Implementation :

C++
#include <bits/stdc++.h>
#define maxLen 10
using namespace std;


// Function to find the maximum sum subsequence
// such that no two elements are adjacent
int maxSum(int arr[], int n, int k)
{
    // DP table
    int dp[n];
    
    // Initializing the DP table
    memset(dp, 0, sizeof(dp));
    
    // Computing the DP table
    for (int i = 0; i < n; i++) {
        int tot = 0;
        for (int j = i - k; j < i; j++) {
            if (j >= 0)
                tot = max(tot, dp[j]);
        }
        dp[i] = tot + arr[i];
    }
    
    // Returning the maximum sum
    int res = 0;
    for (int i = 0; i < n; i++)
        res = max(res, dp[i]);
        
    // return final ans
    return res;
}

// Driver code
int main()
{
    // Input array
    int arr[] = { -1, 2, -3, 4, 5 };
    
    int k = 2;
    
    int n = sizeof(arr) / sizeof(int);
    
    cout << maxSum(arr, n, k);
    
    return 0;
}
Java
import java.util.Arrays;

class GFG 
{
  
    // Function to find the maximum sum subsequence
    // such that no two elements are adjacent
    static int maxSum(int arr[], int n, int k)
    {
      
        // DP table
        int dp[] = new int[n];

        // Initializing the DP table
        Arrays.fill(dp, 0);

        // Computing the DP table
        for (int i = 0; i < n; i++) {
            int tot = 0;
            for (int j = i - k; j < i; j++) {
                if (j >= 0)
                    tot = Math.max(tot, dp[j]);
            }
            dp[i] = tot + arr[i];
        }

        // Returning the maximum sum
        int res = 0;
        for (int i = 0; i < n; i++)
            res = Math.max(res, dp[i]);

        // return final ans
        return res;
    }

    // Driver code
    public static void main(String[] args)
    {
        // Input array
        int arr[] = { -1, 2, -3, 4, 5 };
        int k = 2;
        int n = arr.length;
        System.out.println(maxSum(arr, n, k));
    }
}
Python3
def maxSum(arr, n, k):
    # DP table
    dp = [0] * n

    # Computing the DP table
    for i in range(n):
        tot = 0
        for j in range(i - k, i):
            if j >= 0:
                tot = max(tot, dp[j])
        dp[i] = tot + arr[i]

    # Returning the maximum sum
    res = 0
    for i in range(n):
        res = max(res, dp[i])

    # return final ans
    return res


# Driver code
arr = [-1, 2, -3, 4, 5]
k = 2
n = len(arr)
print(maxSum(arr, n, k))
C#
using System;

class MaxSum
{
    static int ComputeMaxSum(int[] arr, int n, int k)
    {
        // DP table
        int[] dp = new int[n];

        // Computing the DP table
        for (int i = 0; i < n; i++)
        {
            int tot = 0;
            for (int j = i - k; j < i; j++)
            {
                if (j >= 0)
                {
                    tot = Math.Max(tot, dp[j]);
                }
            }
            dp[i] = tot + arr[i];
        }

        // Returning the maximum sum
        int res = 0;
        for (int i = 0; i < n; i++)
        {
            res = Math.Max(res, dp[i]);
        }

        // return final ans
        return res;
    }

    static void Main()
    {
        int[] arr = {-1, 2, -3, 4, 5};
        int k = 2;
        int n = arr.Length;
        Console.WriteLine(ComputeMaxSum(arr, n, k));
    }
}
JavaScript
// Function to find the maximum sum subsequence
// such that no two elements are adjacent
function maxSum(arr, n, k)
{
    // DP table
    let dp = new Array(n);
    
    // Initializing the DP table
    dp.fill(0);
    
    // Computing the DP table
    for (let i = 0; i < n; i++) {
        let tot = 0;
        for (let j = i - k; j < i; j++) {
            if (j >= 0)
                tot = Math.max(tot, dp[j]);
        }
        dp[i] = tot + arr[i];
    }
    
    // Returning the maximum sum
    let res = 0;
    for (let i = 0; i < n; i++)
        res = Math.max(res, dp[i]);
        
    // return final ans
    return res;
}

// Driver code
function main()
{
    // Input array
    let arr = [ -1, 2, -3, 4, 5 ];
    
    let k = 2;
    
    let n = arr.length;
    
    console.log(maxSum(arr, n, k));
}

main();

Output

11

Time Complexity: O(n*k) 
Auxiliary Space: O(n)


Similar Reads