Maximum spiral sum in Binary Tree Last Updated : 22 Oct, 2024 Comments Improve Suggest changes Like Article Like Report Given a binary tree containing n nodes. The task is to find the maximum sum obtained when the tree is spirally traversed. In spiral traversal one by one all levels are being traversed with the root level traversed from right to left, then the next level from left to right, then further next level from right to left and so on.Example: Input: Output: 7Explanation: Maximum spiral sum = 4 + (-1) + (-2) + 1 + 5 = 7 Approach:The idea is to obtain the level order traversal in spiral form of the given binary tree with the help of two stacks and store it in an array. Find the maximum sum sub-array of the array so obtained.Below is the implementation of the above approach: C++ // C++ program to maximum // spiral sum in Binary Tree #include <bits/stdc++.h> using namespace std; class Node { public: int data; Node* left, *right; Node (int x) { data = x; left = nullptr; right = nullptr; } }; int spiralSum (Node* root) { if (root == nullptr) return 0; stack<Node*> currentLevel, nextLevel; currentLevel.push(root); // variable to indicate direction // of traversal. bool leftToRight = false; // Array to store spiral traversal. vector<int> arr; while (!currentLevel.empty()) { int size = currentLevel.size(); while (size--) { Node* curr = currentLevel.top(); currentLevel.pop(); arr.push_back(curr->data); // if current direction to lor, then // push left node first, so that next // level traversal is rol. if (leftToRight) { if (curr->left != nullptr) nextLevel.push(curr->left); if (curr->right != nullptr) nextLevel.push(curr->right); } else { if (curr->right != nullptr) nextLevel.push(curr->right); if (curr->left != nullptr) nextLevel.push(curr->left); } } // Flip the direction. leftToRight = !leftToRight; // Swap the stacks. swap(currentLevel, nextLevel); } int ans = INT_MIN; // variable to store the sum of current subarray. int prev = 0; // Performing kadane's algorithm for (int i = 0; i<arr.size(); i++) { // If the current subarray sum is less than // 0, then start a new subarrray from // index i. if (prev<0) prev = 0; // include the current value into // the subarray sum. prev += arr[i]; // Compare the current subarray sum // with the maximum subarray sum. ans = max(ans, prev); } return ans; } int main() { // Binary tree // -2 // / \ // -3 4 // / \ / \ // 5 1 -2 -1 // / \ // -3 2 Node* root = new Node(-2); root->left = new Node(-3); root->right = new Node(4); root->left->left = new Node(5); root->left->right = new Node(1); root->right->left = new Node(-2); root->right->right = new Node(-1); root->left->left->left = new Node(-3); root->right->right->right = new Node(2); cout << spiralSum(root) << endl; return 0; } Java // Java program to maximum // spiral sum in Binary Tree import java.util.ArrayList; import java.util.Stack; class Node { int data; Node left, right; Node(int x) { data = x; left = null; right = null; } } class GfG { static int spiralSum(Node root) { if (root == null) return 0; Stack<Node> currentLevel = new Stack<>(); Stack<Node> nextLevel = new Stack<>(); currentLevel.push(root); // variable to indicate direction // of traversal. boolean leftToRight = false; // Array to store spiral traversal. ArrayList<Integer> arr = new ArrayList<>(); while (!currentLevel.isEmpty()) { int size = currentLevel.size(); while (size-- > 0) { Node curr = currentLevel.pop(); arr.add(curr.data); // if current direction to lor, then // push left node first, so that next // level traversal is rol. if (leftToRight) { if (curr.left != null) nextLevel.push(curr.left); if (curr.right != null) nextLevel.push(curr.right); } else { if (curr.right != null) nextLevel.push(curr.right); if (curr.left != null) nextLevel.push(curr.left); } } // Flip the direction. leftToRight = !leftToRight; // Swap the stacks. Stack<Node> temp = currentLevel; currentLevel = nextLevel; nextLevel = temp; } int ans = Integer.MIN_VALUE; // variable to store the sum of current subarray. int prev = 0; // Performing kadane's algorithm for (int i = 0; i < arr.size(); i++) { // If the current subarray sum is less than // 0, then start a new subarray from // index i. if (prev < 0) prev = 0; // include the current value into // the subarray sum. prev += arr.get(i); // Compare the current subarray sum // with the maximum subarray sum. ans = Math.max(ans, prev); } return ans; } public static void main(String[] args) { // Binary tree // -2 // / \ // -3 4 // / \ / \ // 5 1 -2 -1 // / \ // -3 2 Node root = new Node(-2); root.left = new Node(-3); root.right = new Node(4); root.left.left = new Node(5); root.left.right = new Node(1); root.right.left = new Node(-2); root.right.right = new Node(-1); root.left.left.left = new Node(-3); root.right.right.right = new Node(2); System.out.println(spiralSum(root)); } } Python # Python program to maximum # spiral sum in Binary Tree class Node: def __init__(self, x): self.data = x self.left = None self.right = None def spiralSum(root): if root is None: return 0 currentLevel = [root] nextLevel = [] # variable to indicate direction # of traversal. leftToRight = False # Array to store spiral traversal. arr = [] while currentLevel: size = len(currentLevel) while size > 0: size -= 1 curr = currentLevel.pop() arr.append(curr.data) # if current direction to lor, then # push left node first, so that next # level traversal is rol. if leftToRight: if curr.left: nextLevel.append(curr.left) if curr.right: nextLevel.append(curr.right) else: if curr.right: nextLevel.append(curr.right) if curr.left: nextLevel.append(curr.left) # Flip the direction. leftToRight = not leftToRight # Swap the lists. currentLevel, nextLevel = nextLevel, currentLevel ans = float('-inf') # variable to store the sum of current # subarray. prev = 0 # Performing kadane's algorithm for i in arr: # If the current subarray sum is less than # 0, then start a new subarray from # index i. if prev < 0: prev = 0 # include the current value into # the subarray sum. prev += i # Compare the current subarray sum # with the maximum subarray sum. ans = max(ans, prev) return ans if __name__ == "__main__": # Binary tree # -2 # / \ # -3 4 # / \ / \ # 5 1 -2 -1 # / \ # -3 2 root = Node(-2) root.left = Node(-3) root.right = Node(4) root.left.left = Node(5) root.left.right = Node(1) root.right.left = Node(-2) root.right.right = Node(-1) root.left.left.left = Node(-3) root.right.right.right = Node(2) print(spiralSum(root)) C# // C# program to maximum // spiral sum in Binary Tree using System; using System.Collections.Generic; class Node { public int data; public Node left, right; public Node(int x) { data = x; left = null; right = null; } } class GfG { static int spiralSum(Node root) { if (root == null) return 0; Stack<Node> currentLevel = new Stack<Node>(); Stack<Node> nextLevel = new Stack<Node>(); currentLevel.Push(root); // variable to indicate direction // of traversal. bool leftToRight = false; // List to store spiral traversal. List<int> arr = new List<int>(); while (currentLevel.Count > 0) { int size = currentLevel.Count; while (size-- > 0) { Node curr = currentLevel.Pop(); arr.Add(curr.data); // if current direction to lor, then // push left node first, so that next // level traversal is rol. if (leftToRight) { if (curr.left != null) nextLevel.Push(curr.left); if (curr.right != null) nextLevel.Push(curr.right); } else { if (curr.right != null) nextLevel.Push(curr.right); if (curr.left != null) nextLevel.Push(curr.left); } } // Flip the direction. leftToRight = !leftToRight; // Swap the stacks. var temp = currentLevel; currentLevel = nextLevel; nextLevel = temp; } int ans = int.MinValue; // variable to store the sum of // current subarray. int prev = 0; // Performing kadane's algorithm for (int i = 0; i < arr.Count; i++) { // If the current subarray sum is less than // 0, then start a new subarray from // index i. if (prev < 0) prev = 0; // include the current value into // the subarray sum. prev += arr[i]; // Compare the current subarray sum // with the maximum subarray sum. ans = Math.Max(ans, prev); } return ans; } static void Main(string[] args) { // Binary tree // -2 // / \ // -3 4 // / \ / \ // 5 1 -2 -1 // / \ // -3 2 Node root = new Node(-2); root.left = new Node(-3); root.right = new Node(4); root.left.left = new Node(5); root.left.right = new Node(1); root.right.left = new Node(-2); root.right.right = new Node(-1); root.left.left.left = new Node(-3); root.right.right.right = new Node(2); Console.WriteLine(spiralSum(root)); } } JavaScript // JavaScript program to maximum // spiral sum in Binary Tree class Node { constructor(x) { this.data = x; this.left = null; this.right = null; } } function spiralSum(root) { if (root === null) return 0; let currentLevel = []; let nextLevel = []; currentLevel.push(root); // variable to indicate direction // of traversal. let leftToRight = false; // Array to store spiral traversal. let arr = []; while (currentLevel.length > 0) { let size = currentLevel.length; while (size-- > 0) { let curr = currentLevel.pop(); arr.push(curr.data); // if current direction to lor, then // push left node first, so that next // level traversal is rol. if (leftToRight) { if (curr.left !== null) nextLevel.push(curr.left); if (curr.right !== null) nextLevel.push(curr.right); } else { if (curr.right !== null) nextLevel.push(curr.right); if (curr.left !== null) nextLevel.push(curr.left); } } // Flip the direction. leftToRight = !leftToRight; // Swap the arrays. let temp = currentLevel; currentLevel = nextLevel; nextLevel = temp; } let ans = Number.MIN_SAFE_INTEGER; // variable to store the sum of // current subarray. let prev = 0; // Performing kadane's algorithm for (let i = 0; i < arr.length; i++) { // If the current subarray sum is less than // 0, then start a new subarray from // index i. if (prev < 0) prev = 0; // include the current value into // the subarray sum. prev += arr[i]; // Compare the current subarray sum // with the maximum subarray sum. ans = Math.max(ans, prev); } return ans; } // Binary tree // -2 // / \ // -3 4 // / \ / \ // 5 1 -2 -1 // / \ // -3 2 let root = new Node(-2); root.left = new Node(-3); root.right = new Node(4); root.left.left = new Node(5); root.left.right = new Node(1); root.right.left = new Node(-2); root.right.right = new Node(-1); root.left.left.left = new Node(-3); root.right.right.right = new Node(2); console.log(spiralSum(root)); Output7 Time Complexity: O(n), where n is the number of nodes in the tree.Auxiliary Space: O(n). Comment More infoAdvertise with us Next Article Maximum spiral sum in Binary Tree A ayushjauhari14 Follow Improve Article Tags : Tree DSA Practice Tags : Tree Similar Reads Binary Tree Data Structure A Binary Tree Data Structure is a hierarchical data structure in which each node has at most two children, referred to as the left child and the right child. It is commonly used in computer science for efficient storage and retrieval of data, with various operations such as insertion, deletion, and 3 min read Introduction to Binary Tree Binary Tree is a non-linear and hierarchical data structure where each node has at most two children referred to as the left child and the right child. The topmost node in a binary tree is called the root, and the bottom-most nodes are called leaves. Introduction to Binary TreeRepresentation of Bina 15+ min read Properties of Binary Tree This post explores the fundamental properties of a binary tree, covering its structure, characteristics, and key relationships between nodes, edges, height, and levelsBinary tree representationNote: Height of root node is considered as 0. Properties of Binary Trees1. Maximum Nodes at Level 'l'A bina 4 min read Applications, Advantages and Disadvantages of Binary Tree A binary tree is a tree that has at most two children for any of its nodes. There are several types of binary trees. To learn more about them please refer to the article on "Types of binary tree" Applications:General ApplicationsDOM in HTML: Binary trees help manage the hierarchical structure of web 2 min read Binary Tree (Array implementation) Given an array that represents a tree in such a way that array indexes are values in tree nodes and array values give the parent node of that particular index (or node). The value of the root node index would always be -1 as there is no parent for root. Construct the standard linked representation o 6 min read Maximum Depth of Binary Tree Given a binary tree, the task is to find the maximum depth of the tree. The maximum depth or height of the tree is the number of edges in the tree from the root to the deepest node.Examples:Input: Output: 2Explanation: The longest path from the root (node 12) goes through node 8 to node 5, which has 11 min read Insertion in a Binary Tree in level order Given a binary tree and a key, the task is to insert the key into the binary tree at the first position available in level order manner.Examples:Input: key = 12 Output: Explanation: Node with value 12 is inserted into the binary tree at the first position available in level order manner.Approach:The 8 min read Deletion in a Binary Tree Given a binary tree, the task is to delete a given node from it by making sure that the tree shrinks from the bottom (i.e. the deleted node is replaced by the bottom-most and rightmost node). This is different from BST deletion. Here we do not have any order among elements, so we replace them with t 12 min read Enumeration of Binary Trees A Binary Tree is labeled if every node is assigned a label and a Binary Tree is unlabelled if nodes are not assigned any label. Below two are considered same unlabelled trees o o / \ / \ o o o o Below two are considered different labelled trees A C / \ / \ B C A B How many different Unlabelled Binar 3 min read Types of Binary TreeTypes of Binary TreeWe have discussed Introduction to Binary Tree in set 1 and the Properties of Binary Tree in Set 2. In this post, common types of Binary Trees are discussed. Types of Binary Tree based on the number of children:Following are the types of Binary Tree based on the number of children: Full Binary TreeDe 7 min read Complete Binary TreeWe know a tree is a non-linear data structure. It has no limitation on the number of children. A binary tree has a limitation as any node of the tree has at most two children: a left and a right child. What is a Complete Binary Tree?A complete binary tree is a special type of binary tree where all t 7 min read Perfect Binary TreeWhat is a Perfect Binary Tree? A perfect binary tree is a special type of binary tree in which all the leaf nodes are at the same depth, and all non-leaf nodes have two children. In simple terms, this means that all leaf nodes are at the maximum depth of the tree, and the tree is completely filled w 4 min read Like