Maximum average sum partition of an array
Last Updated :
20 Dec, 2022
Given an array, we partition a row of numbers A into at most K adjacent (non-empty) groups, then the score is the sum of the average of each group. What is the maximum score that can be scored?
Examples:
Input : A = { 9, 1, 2, 3, 9 }
K = 3
Output : 20
Explanation : We can partition A into [9], [1, 2, 3], [9]. The answer is 9 + (1 + 2 + 3) / 3 + 9 = 20.
We could have also partitioned A into [9, 1], [2], [3, 9]. That partition would lead to a score of 5 + 2 + 6 = 13, which is worse.
Input : A[] = { 1, 2, 3, 4, 5, 6, 7 }
K = 4
Output : 20.5
Explanation : We can partition A into [1, 2, 3, 4], [5], [6], [7]. The answer is 2.5 + 5 + 6 + 7 = 20.5.
A simple solution is to use recursion. An efficient solution is memorization where we keep the largest score upto k i.e. for 1, 2, 3... upto k;
Let memo[i][k] be the best score portioning A[i..n-1] into at most K parts. In the first group, we partition A[i..n-1] into A[i..j-1] and A[j..n-1], then our candidate partition has score average(i, j) + score(j, k-1)), where average(i, j) = (A[i] + A[i+1] + ... + A[j-1]) / (j - i). We take the highest score of these.
In total, our recursion in the general case is :
memo[n][k] = max(memo[n][k], score(memo, i, A, k-1) + average(i, j))
for all i from n-1 to 1 .
Implementation:
C++
// CPP program for maximum average sum partition
#include <bits/stdc++.h>
using namespace std;
#define MAX 1000
double memo[MAX][MAX];
// bottom up approach to calculate score
double score(int n, vector<int>& A, int k)
{
if (memo[n][k] > 0)
return memo[n][k];
double sum = 0;
for (int i = n - 1; i > 0; i--) {
sum += A[i];
memo[n][k] = max(memo[n][k], score(i, A, k - 1) +
sum / (n - i));
}
return memo[n][k];
}
double largestSumOfAverages(vector<int>& A, int K)
{
int n = A.size();
double sum = 0;
memset(memo, 0.0, sizeof(memo));
for (int i = 0; i < n; i++) {
sum += A[i];
// storing averages from starting to each i ;
memo[i + 1][1] = sum / (i + 1);
}
return score(n, A, K);
}
int main()
{
vector<int> A = { 9, 1, 2, 3, 9 };
int K = 3; // atmost partitioning size
cout << largestSumOfAverages(A, K) << endl;
return 0;
}
Java
// Java program for maximum average sum partition
import java.util.Arrays;
import java.util.Vector;
class GFG
{
static int MAX = 1000;
static double[][] memo = new double[MAX][MAX];
// bottom up approach to calculate score
public static double score(int n, Vector<Integer> A, int k)
{
if (memo[n][k] > 0)
return memo[n][k];
double sum = 0;
for (int i = n - 1; i > 0; i--)
{
sum += A.elementAt(i);
memo[n][k] = Math.max(memo[n][k],
score(i, A, k - 1) +
sum / (n - i));
}
return memo[n][k];
}
public static double largestSumOfAverages(Vector<Integer> A, int K)
{
int n = A.size();
double sum = 0;
for (int i = 0; i < memo.length; i++)
{
for (int j = 0; j < memo[i].length; j++)
memo[i][j] = 0.0;
}
for (int i = 0; i < n; i++)
{
sum += A.elementAt(i);
// storing averages from starting to each i ;
memo[i + 1][1] = sum / (i + 1);
}
return score(n, A, K);
}
// Driver code
public static void main(String[] args)
{
Vector<Integer> A = new Vector<>(Arrays.asList(9, 1, 2, 3, 9));
int K = 3;
System.out.println(largestSumOfAverages(A, K));
}
}
// This code is contributed by sanjeev2552
Python3
# Python3 program for maximum average sum partition
MAX = 1000
memo = [[0.0 for i in range(MAX)]
for i in range(MAX)]
# bottom up approach to calculate score
def score(n, A, k):
if (memo[n][k] > 0):
return memo[n][k]
sum = 0
i = n - 1
while(i > 0):
sum += A[i]
memo[n][k] = max(memo[n][k], score(i, A, k - 1) +
int(sum / (n - i)))
i -= 1
return memo[n][k]
def largestSumOfAverages(A, K):
n = len(A)
sum = 0
for i in range(n):
sum += A[i]
# storing averages from starting to each i ;
memo[i + 1][1] = int(sum / (i + 1))
return score(n, A, K)
# Driver Code
if __name__ == '__main__':
A = [9, 1, 2, 3, 9]
K = 3 # atmost partitioning size
print(largestSumOfAverages(A, K))
# This code is contributed by
# Surendra_Gangwar
C#
// C# program for maximum average sum partition
using System;
using System.Collections.Generic;
class GFG
{
static int MAX = 1000;
static double[,] memo = new double[MAX, MAX];
// bottom up approach to calculate score
public static double score(int n,
List<int> A, int k)
{
if (memo[n, k] > 0)
return memo[n, k];
double sum = 0;
for (int i = n - 1; i > 0; i--)
{
sum += A[i];
memo[n, k] = Math.Max(memo[n, k],
score(i, A, k - 1) +
sum / (n - i));
}
return memo[n, k];
}
public static double largestSumOfAverages(List<int> A,
int K)
{
int n = A.Count;
double sum = 0;
for (int i = 0;
i < memo.GetLength(0); i++)
{
for (int j = 0;
j < memo.GetLength(1); j++)
memo[i, j] = 0.0;
}
for (int i = 0; i < n; i++)
{
sum += A[i];
// storing averages from
// starting to each i;
memo[i + 1, 1] = sum / (i + 1);
}
return score(n, A, K);
}
// Driver code
public static void Main(String[] args)
{
int [] arr = {9, 1, 2, 3, 9};
List<int> A = new List<int>(arr);
int K = 3;
Console.WriteLine(largestSumOfAverages(A, K));
}
}
// This code is contributed by Rajput-Ji
JavaScript
<script>
// JavaScript program for maximum average sum partition
let MAX = 1000;
let memo = new Array(MAX).fill(0).map(() => new Array(MAX).fill(0));
// bottom up approach to calculate score
function score(n, A, k) {
if (memo[n][k] > 0)
return memo[n][k];
let sum = 0;
for (let i = n - 1; i > 0; i--) {
sum += A[i];
memo[n][k] = Math.max(memo[n][k], score(i, A, k - 1) +
sum / (n - i));
}
return memo[n][k];
}
function largestSumOfAverages(A, K) {
let n = A.length;
let sum = 0;
for (let i = 0; i < n; i++) {
sum += A[i];
// storing averages from starting to each i ;
memo[i + 1][1] = sum / (i + 1);
}
return score(n, A, K);
}
let A = [9, 1, 2, 3, 9];
let K = 3; // atmost partitioning size
document.write(largestSumOfAverages(A, K) + "<br>");
</script>
Above problem can now be easily understood as dynamic programming.
Let dp(i, k) be the best score partitioning A[i:j] into at most K parts. If the first group we partition A[i:j] into ends before j, then our candidate partition has score average(i, j) + dp(j, k-1)). Recursion in the general case is dp(i, k) = max(average(i, N), (average(i, j) + dp(j, k-1))). We can precompute the prefix sums for fast execution of out code.
Implementation:
C++
// CPP program for maximum average sum partition
#include <bits/stdc++.h>
using namespace std;
double largestSumOfAverages(vector<int>& A, int K)
{
int n = A.size();
// storing prefix sums
double pre_sum[n+1];
pre_sum[0] = 0;
for (int i = 0; i < n; i++)
pre_sum[i + 1] = pre_sum[i] + A[i];
// for each i to n storing averages
double dp[n] = {0};
double sum = 0;
for (int i = 0; i < n; i++)
dp[i] = (pre_sum[n] - pre_sum[i]) / (n - i);
for (int k = 0; k < K - 1; k++)
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
dp[i] = max(dp[i], (pre_sum[j] -
pre_sum[i]) / (j - i) + dp[j]);
return dp[0];
}
// Driver code
int main()
{
vector<int> A = { 9, 1, 2, 3, 9 };
int K = 3; // atmost partitioning size
cout << largestSumOfAverages(A, K) << endl;
return 0;
}
Java
// Java program for maximum average sum partition
import java.util.*;
class GFG
{
static double largestSumOfAverages(int[] A, int K)
{
int n = A.length;
// storing prefix sums
double []pre_sum = new double[n + 1];
pre_sum[0] = 0;
for (int i = 0; i < n; i++)
pre_sum[i + 1] = pre_sum[i] + A[i];
// for each i to n storing averages
double []dp = new double[n];
double sum = 0;
for (int i = 0; i < n; i++)
dp[i] = (pre_sum[n] - pre_sum[i]) / (n - i);
for (int k = 0; k < K - 1; k++)
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
dp[i] = Math.max(dp[i], (pre_sum[j] -
pre_sum[i]) / (j - i) + dp[j]);
return dp[0];
}
// Driver code
public static void main(String[] args)
{
int []A = { 9, 1, 2, 3, 9 };
int K = 3; // atmost partitioning size
System.out.println(largestSumOfAverages(A, K));
}
}
// This code is contributed by PrinciRaj1992
Python3
# Python3 program for maximum average
# sum partition
def largestSumOfAverages(A, K):
n = len(A);
# storing prefix sums
pre_sum = [0] * (n + 1);
pre_sum[0] = 0;
for i in range(n):
pre_sum[i + 1] = pre_sum[i] + A[i];
# for each i to n storing averages
dp = [0] * n;
sum = 0;
for i in range(n):
dp[i] = (pre_sum[n] -
pre_sum[i]) / (n - i);
for k in range(K - 1):
for i in range(n):
for j in range(i + 1, n):
dp[i] = max(dp[i], (pre_sum[j] -
pre_sum[i]) /
(j - i) + dp[j]);
return int(dp[0]);
# Driver code
A = [ 9, 1, 2, 3, 9 ];
K = 3; # atmost partitioning size
print(largestSumOfAverages(A, K));
# This code is contributed by Rajput-Ji
C#
// C# program for maximum average sum partition
using System;
using System.Collections.Generic;
class GFG
{
static double largestSumOfAverages(int[] A,
int K)
{
int n = A.Length;
// storing prefix sums
double []pre_sum = new double[n + 1];
pre_sum[0] = 0;
for (int i = 0; i < n; i++)
pre_sum[i + 1] = pre_sum[i] + A[i];
// for each i to n storing averages
double []dp = new double[n];
for (int i = 0; i < n; i++)
dp[i] = (pre_sum[n] - pre_sum[i]) / (n - i);
for (int k = 0; k < K - 1; k++)
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
dp[i] = Math.Max(dp[i], (pre_sum[j] -
pre_sum[i]) / (j - i) + dp[j]);
return dp[0];
}
// Driver code
public static void Main(String[] args)
{
int []A = { 9, 1, 2, 3, 9 };
int K = 3; // atmost partitioning size
Console.WriteLine(largestSumOfAverages(A, K));
}
}
// This code is contributed by PrinciRaj1992
JavaScript
<script>
// javascript program for maximum average sum partition
function largestSumOfAverages(A , K) {
var n = A.length;
// storing prefix sums
var pre_sum = Array(n + 1).fill(-1);
pre_sum[0] = 0;
for (var i = 0; i < n; i++)
pre_sum[i + 1] = pre_sum[i] + A[i];
// for each i to n storing averages
var dp = Array(n).fill(-1);
var sum = 0;
for (var i = 0; i < n; i++)
dp[i] = (pre_sum[n] - pre_sum[i]) / (n - i);
for (k = 0; k < K - 1; k++)
for (i = 0; i < n; i++)
for (j = i + 1; j < n; j++)
dp[i] = Math.max(dp[i], (pre_sum[j] - pre_sum[i]) / (j - i) + dp[j]);
return dp[0];
}
// Driver code
var A = [ 9, 1, 2, 3, 9 ];
var K = 3; // atmost partitioning size
document.write(largestSumOfAverages(A, K));
// This code is contributed by umadevi9616
</script>
Time Complexity: O(n2*K)
Auxiliary Space: O(n)
Similar Reads
Maximum sum of minimums of pairs in an array Given an array arr[] of N integers where N is even, the task is to group the array elements in the pairs (X1, Y1), (X2, Y2), (X3, Y3), ... such that the sum min(X1, Y1) + min(X2, Y2) + min(X3, Y3) + ... is maximum.Examples: Input: arr[] = {1, 5, 3, 2} Output: 4 (1, 5) and (3, 2) -> 1 + 2 = 3 (1,
4 min read
Maximize sum of XOR of each element of Array with partition number Given an array arr of positive integers of size N, the task is to split the array into 3 partitions, such that the sum of bitwise XOR of each element of the array with its partition number is maximum. Examples: Input: arr[] = { 2, 4, 7, 1, 8, 7, 2 }Output: First partition: 2 4 7 1 8Second partition:
9 min read
Optimal partition of an array into four parts Given an array of n non-negative integers. Choose three indices i.e. (0 <= index_1 <= index_ 2<= index_3 <= n) from the array to make four subsets such that the term sum(0, index_1) - sum(index_1, index_2) + sum(index_2, index_3) - sum(index_3, n) is maximum possible. Here, two indices s
9 min read
Maximize sum of second minimums of each K length partitions of the array Given an array A[] of size N and a positive integer K ( which will always be a factor of N), the task is to find the maximum possible sum of the second smallest elements of each partition of the array by partitioning the array into (N / K) partitions of equal size. Examples: Input: A[] = {2, 3, 1, 4
6 min read
Remove all occurrences of any element for maximum array sum Given an array of positive integers, remove all the occurrences of the element to get the maximum sum of the remaining array. Examples: Input : arr = {1, 1, 3} Output : 3 On removing 1 from the array, we get {3}. The total value is 3 Input : arr = {1, 1, 3, 3, 2, 2, 1, 1, 1} Output : 11 On removing
6 min read
Maximum sum of smallest and second smallest in an array Given an array arr[] of size n, the task is to find the maximum sum of the smallest and second smallest elements among all possible subarrays of size greater than equals to two.Examples:Input : arr[] = [4, 3, 1, 5, 6]Output : 11Subarrays with smallest and second smallest are,Subarray: [4, 3], smalle
8 min read
Maximum sum of increasing order elements from n arrays Given n arrays of size m each. Find the maximum sum obtained by selecting a number from each array such that the elements selected from the i-th array are more than the element selected from (i-1)-th array. If maximum sum cannot be obtained then return 0.Examples: Input : arr[][] = {{1, 7, 3, 4}, {4
13 min read
Collect maximum points in an array with k moves Given an array of integer and two values k and i where k is the number of moves and i is the index in the array. The task is to collect maximum points in the array by moving either in single or both directions from given index i and making k moves. Note that every array element visited is considered
9 min read
K maximum sums of overlapping contiguous sub-arrays Given an array of Integers and an Integer value k, find out k sub-arrays(may be overlapping), which have k maximum sums. Examples: Input : arr = {4, -8, 9, -4, 1, -8, -1, 6}, k = 4 Output : 9 6 6 5Input : arr = {-2, -3, 4, -1, -2, 1, 5, -3}, k= 3 Output : 7 6 5 Using Kadane's Algorithm we can find t
13 min read
Printing Maximum Sum Increasing Subsequence The Maximum Sum Increasing Subsequence problem is to find the maximum sum subsequence of a given sequence such that all elements of the subsequence are sorted in increasing order.Examples: Input: [1, 101, 2, 3, 100, 4, 5]Output: [1, 2, 3, 100]Input: [3, 4, 5, 10]Output: [3, 4, 5, 10]Input: [10, 5, 4
15 min read