Maximum average sum partition of an array
Last Updated :
20 Dec, 2022
Given an array, we partition a row of numbers A into at most K adjacent (non-empty) groups, then the score is the sum of the average of each group. What is the maximum score that can be scored?
Examples:
Input : A = { 9, 1, 2, 3, 9 }
K = 3
Output : 20
Explanation : We can partition A into [9], [1, 2, 3], [9]. The answer is 9 + (1 + 2 + 3) / 3 + 9 = 20.
We could have also partitioned A into [9, 1], [2], [3, 9]. That partition would lead to a score of 5 + 2 + 6 = 13, which is worse.
Input : A[] = { 1, 2, 3, 4, 5, 6, 7 }
K = 4
Output : 20.5
Explanation : We can partition A into [1, 2, 3, 4], [5], [6], [7]. The answer is 2.5 + 5 + 6 + 7 = 20.5.
A simple solution is to use recursion. An efficient solution is memorization where we keep the largest score upto k i.e. for 1, 2, 3... upto k;
Let memo[i][k] be the best score portioning A[i..n-1] into at most K parts. In the first group, we partition A[i..n-1] into A[i..j-1] and A[j..n-1], then our candidate partition has score average(i, j) + score(j, k-1)), where average(i, j) = (A[i] + A[i+1] + ... + A[j-1]) / (j - i). We take the highest score of these.
In total, our recursion in the general case is :
memo[n][k] = max(memo[n][k], score(memo, i, A, k-1) + average(i, j))
for all i from n-1 to 1 .
Implementation:
C++
// CPP program for maximum average sum partition
#include <bits/stdc++.h>
using namespace std;
#define MAX 1000
double memo[MAX][MAX];
// bottom up approach to calculate score
double score(int n, vector<int>& A, int k)
{
if (memo[n][k] > 0)
return memo[n][k];
double sum = 0;
for (int i = n - 1; i > 0; i--) {
sum += A[i];
memo[n][k] = max(memo[n][k], score(i, A, k - 1) +
sum / (n - i));
}
return memo[n][k];
}
double largestSumOfAverages(vector<int>& A, int K)
{
int n = A.size();
double sum = 0;
memset(memo, 0.0, sizeof(memo));
for (int i = 0; i < n; i++) {
sum += A[i];
// storing averages from starting to each i ;
memo[i + 1][1] = sum / (i + 1);
}
return score(n, A, K);
}
int main()
{
vector<int> A = { 9, 1, 2, 3, 9 };
int K = 3; // atmost partitioning size
cout << largestSumOfAverages(A, K) << endl;
return 0;
}
Java
// Java program for maximum average sum partition
import java.util.Arrays;
import java.util.Vector;
class GFG
{
static int MAX = 1000;
static double[][] memo = new double[MAX][MAX];
// bottom up approach to calculate score
public static double score(int n, Vector<Integer> A, int k)
{
if (memo[n][k] > 0)
return memo[n][k];
double sum = 0;
for (int i = n - 1; i > 0; i--)
{
sum += A.elementAt(i);
memo[n][k] = Math.max(memo[n][k],
score(i, A, k - 1) +
sum / (n - i));
}
return memo[n][k];
}
public static double largestSumOfAverages(Vector<Integer> A, int K)
{
int n = A.size();
double sum = 0;
for (int i = 0; i < memo.length; i++)
{
for (int j = 0; j < memo[i].length; j++)
memo[i][j] = 0.0;
}
for (int i = 0; i < n; i++)
{
sum += A.elementAt(i);
// storing averages from starting to each i ;
memo[i + 1][1] = sum / (i + 1);
}
return score(n, A, K);
}
// Driver code
public static void main(String[] args)
{
Vector<Integer> A = new Vector<>(Arrays.asList(9, 1, 2, 3, 9));
int K = 3;
System.out.println(largestSumOfAverages(A, K));
}
}
// This code is contributed by sanjeev2552
Python3
# Python3 program for maximum average sum partition
MAX = 1000
memo = [[0.0 for i in range(MAX)]
for i in range(MAX)]
# bottom up approach to calculate score
def score(n, A, k):
if (memo[n][k] > 0):
return memo[n][k]
sum = 0
i = n - 1
while(i > 0):
sum += A[i]
memo[n][k] = max(memo[n][k], score(i, A, k - 1) +
int(sum / (n - i)))
i -= 1
return memo[n][k]
def largestSumOfAverages(A, K):
n = len(A)
sum = 0
for i in range(n):
sum += A[i]
# storing averages from starting to each i ;
memo[i + 1][1] = int(sum / (i + 1))
return score(n, A, K)
# Driver Code
if __name__ == '__main__':
A = [9, 1, 2, 3, 9]
K = 3 # atmost partitioning size
print(largestSumOfAverages(A, K))
# This code is contributed by
# Surendra_Gangwar
C#
// C# program for maximum average sum partition
using System;
using System.Collections.Generic;
class GFG
{
static int MAX = 1000;
static double[,] memo = new double[MAX, MAX];
// bottom up approach to calculate score
public static double score(int n,
List<int> A, int k)
{
if (memo[n, k] > 0)
return memo[n, k];
double sum = 0;
for (int i = n - 1; i > 0; i--)
{
sum += A[i];
memo[n, k] = Math.Max(memo[n, k],
score(i, A, k - 1) +
sum / (n - i));
}
return memo[n, k];
}
public static double largestSumOfAverages(List<int> A,
int K)
{
int n = A.Count;
double sum = 0;
for (int i = 0;
i < memo.GetLength(0); i++)
{
for (int j = 0;
j < memo.GetLength(1); j++)
memo[i, j] = 0.0;
}
for (int i = 0; i < n; i++)
{
sum += A[i];
// storing averages from
// starting to each i;
memo[i + 1, 1] = sum / (i + 1);
}
return score(n, A, K);
}
// Driver code
public static void Main(String[] args)
{
int [] arr = {9, 1, 2, 3, 9};
List<int> A = new List<int>(arr);
int K = 3;
Console.WriteLine(largestSumOfAverages(A, K));
}
}
// This code is contributed by Rajput-Ji
JavaScript
<script>
// JavaScript program for maximum average sum partition
let MAX = 1000;
let memo = new Array(MAX).fill(0).map(() => new Array(MAX).fill(0));
// bottom up approach to calculate score
function score(n, A, k) {
if (memo[n][k] > 0)
return memo[n][k];
let sum = 0;
for (let i = n - 1; i > 0; i--) {
sum += A[i];
memo[n][k] = Math.max(memo[n][k], score(i, A, k - 1) +
sum / (n - i));
}
return memo[n][k];
}
function largestSumOfAverages(A, K) {
let n = A.length;
let sum = 0;
for (let i = 0; i < n; i++) {
sum += A[i];
// storing averages from starting to each i ;
memo[i + 1][1] = sum / (i + 1);
}
return score(n, A, K);
}
let A = [9, 1, 2, 3, 9];
let K = 3; // atmost partitioning size
document.write(largestSumOfAverages(A, K) + "<br>");
</script>
Above problem can now be easily understood as dynamic programming.
Let dp(i, k) be the best score partitioning A[i:j] into at most K parts. If the first group we partition A[i:j] into ends before j, then our candidate partition has score average(i, j) + dp(j, k-1)). Recursion in the general case is dp(i, k) = max(average(i, N), (average(i, j) + dp(j, k-1))). We can precompute the prefix sums for fast execution of out code.
Implementation:
C++
// CPP program for maximum average sum partition
#include <bits/stdc++.h>
using namespace std;
double largestSumOfAverages(vector<int>& A, int K)
{
int n = A.size();
// storing prefix sums
double pre_sum[n+1];
pre_sum[0] = 0;
for (int i = 0; i < n; i++)
pre_sum[i + 1] = pre_sum[i] + A[i];
// for each i to n storing averages
double dp[n] = {0};
double sum = 0;
for (int i = 0; i < n; i++)
dp[i] = (pre_sum[n] - pre_sum[i]) / (n - i);
for (int k = 0; k < K - 1; k++)
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
dp[i] = max(dp[i], (pre_sum[j] -
pre_sum[i]) / (j - i) + dp[j]);
return dp[0];
}
// Driver code
int main()
{
vector<int> A = { 9, 1, 2, 3, 9 };
int K = 3; // atmost partitioning size
cout << largestSumOfAverages(A, K) << endl;
return 0;
}
Java
// Java program for maximum average sum partition
import java.util.*;
class GFG
{
static double largestSumOfAverages(int[] A, int K)
{
int n = A.length;
// storing prefix sums
double []pre_sum = new double[n + 1];
pre_sum[0] = 0;
for (int i = 0; i < n; i++)
pre_sum[i + 1] = pre_sum[i] + A[i];
// for each i to n storing averages
double []dp = new double[n];
double sum = 0;
for (int i = 0; i < n; i++)
dp[i] = (pre_sum[n] - pre_sum[i]) / (n - i);
for (int k = 0; k < K - 1; k++)
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
dp[i] = Math.max(dp[i], (pre_sum[j] -
pre_sum[i]) / (j - i) + dp[j]);
return dp[0];
}
// Driver code
public static void main(String[] args)
{
int []A = { 9, 1, 2, 3, 9 };
int K = 3; // atmost partitioning size
System.out.println(largestSumOfAverages(A, K));
}
}
// This code is contributed by PrinciRaj1992
Python3
# Python3 program for maximum average
# sum partition
def largestSumOfAverages(A, K):
n = len(A);
# storing prefix sums
pre_sum = [0] * (n + 1);
pre_sum[0] = 0;
for i in range(n):
pre_sum[i + 1] = pre_sum[i] + A[i];
# for each i to n storing averages
dp = [0] * n;
sum = 0;
for i in range(n):
dp[i] = (pre_sum[n] -
pre_sum[i]) / (n - i);
for k in range(K - 1):
for i in range(n):
for j in range(i + 1, n):
dp[i] = max(dp[i], (pre_sum[j] -
pre_sum[i]) /
(j - i) + dp[j]);
return int(dp[0]);
# Driver code
A = [ 9, 1, 2, 3, 9 ];
K = 3; # atmost partitioning size
print(largestSumOfAverages(A, K));
# This code is contributed by Rajput-Ji
C#
// C# program for maximum average sum partition
using System;
using System.Collections.Generic;
class GFG
{
static double largestSumOfAverages(int[] A,
int K)
{
int n = A.Length;
// storing prefix sums
double []pre_sum = new double[n + 1];
pre_sum[0] = 0;
for (int i = 0; i < n; i++)
pre_sum[i + 1] = pre_sum[i] + A[i];
// for each i to n storing averages
double []dp = new double[n];
for (int i = 0; i < n; i++)
dp[i] = (pre_sum[n] - pre_sum[i]) / (n - i);
for (int k = 0; k < K - 1; k++)
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
dp[i] = Math.Max(dp[i], (pre_sum[j] -
pre_sum[i]) / (j - i) + dp[j]);
return dp[0];
}
// Driver code
public static void Main(String[] args)
{
int []A = { 9, 1, 2, 3, 9 };
int K = 3; // atmost partitioning size
Console.WriteLine(largestSumOfAverages(A, K));
}
}
// This code is contributed by PrinciRaj1992
JavaScript
<script>
// javascript program for maximum average sum partition
function largestSumOfAverages(A , K) {
var n = A.length;
// storing prefix sums
var pre_sum = Array(n + 1).fill(-1);
pre_sum[0] = 0;
for (var i = 0; i < n; i++)
pre_sum[i + 1] = pre_sum[i] + A[i];
// for each i to n storing averages
var dp = Array(n).fill(-1);
var sum = 0;
for (var i = 0; i < n; i++)
dp[i] = (pre_sum[n] - pre_sum[i]) / (n - i);
for (k = 0; k < K - 1; k++)
for (i = 0; i < n; i++)
for (j = i + 1; j < n; j++)
dp[i] = Math.max(dp[i], (pre_sum[j] - pre_sum[i]) / (j - i) + dp[j]);
return dp[0];
}
// Driver code
var A = [ 9, 1, 2, 3, 9 ];
var K = 3; // atmost partitioning size
document.write(largestSumOfAverages(A, K));
// This code is contributed by umadevi9616
</script>
Time Complexity: O(n2*K)
Auxiliary Space: O(n)
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read
Selection Sort Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
8 min read