Open In App

Maximize sum that can be obtained from two given arrays based on given conditions

Last Updated : 23 Jul, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Given two arrays A[] and B[] each of size N, the task is to find the maximum sum that can be obtained based on the following conditions:

  • Both A[i] and B[i] cannot be included in the sum ( 0 ? i ? N - 1 ).
  • If B[i] is added to the sum, then B[i - 1] and A[i - 1] cannot be included in the sum ( 0 ? i ? N - 1 ).

Examples:

Input: A[] = {10, 20, 5}, B[] = {5, 5, 45}
Output: 55
Explanation: The optimal way to maximize the sum is by including A[0] (= 10) and B[2] (= 45) in the sum. Therefore, sum = 10 + 45 = 55.

Input: A[] = {10, 1, 10, 10}, B[] = {5, 50, 1, 5}
Output: 70

Approach: This problem has Optimal substructure and Overlapping subproblems. Therefore, Dynamic Programming can be used to solve the problem. 
Follow the steps below to solve the problem:

  • Initialize a array, say dp[n][2], where dp[i][0] stores the maximum sum if element A[i] is taken into consideration and dp[i][1] stores the maximum sum if B[i] is taken into consideration.
  • Iterate in the range [0, N - 1] using a variable, say i, and perform the following steps:
    • If i is equal to 0, then modify the value of dp[i][0] as A[i] and dp[i][1] as B[i].
    • Otherwise, perform the following operations:
      • Modify the value of dp[i][0] as max(dp[i - 1][0], dp[i - 1][1]) + A[i].
      • Modify the value of dp[i][1] as max(dp[i - 1], max(dp[i - 1][0], max(dp[i - 2][0], dp[i - 2][1]) + B[i])).
  • After completing the above steps, print the max(dp[N-1][0], dp[N-1][1]) as the answer.

Below is the implementation of the above approach:

C++
// C++ program for the above approach

#include <bits/stdc++.h>
using namespace std;

// Function to find the maximum sum
// that can be obtained from two given
// based on the following conditions
int MaximumSum(int a[], int b[], int n)
{
    // Stores the maximum
    // sum from 0 to i
    int dp[n][2];

    // Initialize the value of
    // dp[0][0] and dp[0][1]
    dp[0][0] = a[0];
    dp[0][1] = b[0];

    // Traverse the array A[] and B[]
    for (int i = 1; i < n; i++) {
        // If A[i] is considered
        dp[i][0] = max(dp[i - 1][0], dp[i - 1][1]) + a[i];

        // If B[i] is not considered
        dp[i][1] = max(dp[i - 1][0], dp[i - 1][1]);

        // If B[i] is considered
        if (i - 2 >= 0) {
            dp[i][1] = max(dp[i][1],
                           max(dp[i - 2][0],
                               dp[i - 2][1])
                               + b[i]);
        }
        else {
            // If i = 1, then consider the
            // value of  dp[i][1] as b[i]
            dp[i][1] = max(dp[i][1], b[i]);
        }
    }

    // Return maximum Sum
    return max(dp[n - 1][0], dp[n - 1][1]);
}

// Driver Code
int main()
{
    // Given Input
    int A[] = { 10, 1, 10, 10 };
    int B[] = { 5, 50, 1, 5 };
    int N = sizeof(A) / sizeof(A[0]);

    // Function Call
    cout << MaximumSum(A, B, N);
    return 0;
}
Java
// Java program for the above approach

class GFG {
    // Function to find the maximum sum
    // that can be obtained from two given
    // based on the following conditions
    public static int MaximumSum(int a[], int b[], int n) {
        // Stores the maximum
        // sum from 0 to i
        int[][] dp = new int[n][2];

        // Initialize the value of
        // dp[0][0] and dp[0][1]
        dp[0][0] = a[0];
        dp[0][1] = b[0];

        // Traverse the array A[] and B[]
        for (int i = 1; i < n; i++) {
            // If A[i] is considered
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1]) + a[i];

            // If B[i] is not considered
            dp[i][1] = Math.max(dp[i - 1][0], dp[i - 1][1]);

            // If B[i] is considered
            if (i - 2 >= 0) {
                dp[i][1] = Math.max(dp[i][1], Math.max(dp[i - 2][0], dp[i - 2][1]) + b[i]);
            } else 
            {
              
                // If i = 1, then consider the
                // value of dp[i][1] as b[i]
                dp[i][1] = Math.max(dp[i][1], b[i]);
            }
        }

        // Return maximum Sum
        return Math.max(dp[n - 1][0], dp[n - 1][1]);
    }

    // Driver Code
    public static void main(String args[]) {
        // Given Input
        int A[] = { 10, 1, 10, 10 };
        int B[] = { 5, 50, 1, 5 };
        int N = A.length;

        // Function Call
        System.out.println(MaximumSum(A, B, N));
    }
}

// This  code is contributed by _saurabh_jaiswal.
Python3
# Python3 program for the above approach

# Function to find the maximum sum
# that can be obtained from two given
# arrays based on the following conditions
def MaximumSum(a, b, n):
  
    # Stores the maximum
    # sum from 0 to i
    dp = [[-1 for j in range(2)] 
              for i in range(n)]
    
    # Initialize the value of
    # dp[0][0] and dp[0][1]
    dp[0][0] = a[0]
    dp[0][1] = b[0]
    
    # Traverse the array A[] and B[]
    for i in range(1, n):
      
        # If A[i] is considered
        dp[i][0] = max(dp[i - 1][0], 
                       dp[i - 1][1]) + a[i]
        
        # If B[i] is not considered
        dp[i][1] = max(dp[i - 1][0], 
                       dp[i - 1][1])
        
        # If B[i] is considered
        if (i - 2 >= 0):
            dp[i][1] = max(dp[i][1], max(dp[i - 2][0], 
                                         dp[i - 2][1]) + b[i])
        else:
            
            # If i = 1, then consider the
            # value of  dp[i][1] as b[i]
            dp[i][1] = max(dp[i][1], b[i])

    # Return maximum sum
    return max(dp[n - 1][0], dp[n - 1][1])

# Driver code
if __name__ == '__main__':
    
    # Given input
    A = [ 10, 1, 10, 10 ]
    B = [ 5, 50, 1, 5 ]
    N = len(A)
    
    # Function call
    print(MaximumSum(A, B, N))
    
# This code is contributed by MuskanKalra1
C#
// C# program for the above approach
using System;
using System.Collections.Generic;

class GFG{

// Function to find the maximum sum
// that can be obtained from two given
// based on the following conditions
static int MaximumSum(int []a, int []b, int n)
{
  
    // Stores the maximum
    // sum from 0 to i
    int [,]dp = new int[n,2];

    // Initialize the value of
    // dp[0][0] and dp[0][1]
    dp[0,0] = a[0];
    dp[0,1] = b[0];

    // Traverse the array A[] and B[]
    for (int i = 1; i < n; i++)
    {
      
        // If A[i] is considered
        dp[i,0] = Math.Max(dp[i - 1,0], dp[i - 1,1]) + a[i];

        // If B[i] is not considered
        dp[i,1] = Math.Max(dp[i - 1,0], dp[i - 1,1]);

        // If B[i] is considered
        if (i - 2 >= 0) {
            dp[i,1] = Math.Max(dp[i,1],
                           Math.Max(dp[i - 2,0],
                               dp[i - 2,1])
                               + b[i]);
        }
        else
        {
          
            // If i = 1, then consider the
            // value of  dp[i][1] as b[i]
            dp[i,1] = Math.Max(dp[i,1], b[i]);
        }
    }

    // Return maximum Sum
    return Math.Max(dp[n - 1,0], dp[n - 1,1]);
}

// Driver Code
public static void Main()
{
    // Given Input
    int []A = { 10, 1, 10, 10 };
    int []B = { 5, 50, 1, 5 };
    int N = A.Length;

    // Function Call
    Console.Write(MaximumSum(A, B, N));
}
}

// This code is contributed by ipg2016107.
JavaScript
<script>

// Javascript program for the above approach

// Function to find the maximum sum
// that can be obtained from two given
// based on the following conditions
function MaximumSum(a, b, n) 
{
    
    // Stores the maximum
    // sum from 0 to i
    let dp = new Array(n).fill(0).map(
       () => new Array(2));

    // Initialize the value of
    // dp[0][0] and dp[0][1]
    dp[0][0] = a[0];
    dp[0][1] = b[0];

    // Traverse the array A[] and B[]
    for(let i = 1; i < n; i++) 
    {
        
        // If A[i] is considered
        dp[i][0] = Math.max(dp[i - 1][0], 
                            dp[i - 1][1]) + a[i];

        // If B[i] is not considered
        dp[i][1] = Math.max(dp[i - 1][0], 
                            dp[i - 1][1]);

        // If B[i] is considered
        if (i - 2 >= 0) 
        {
            dp[i][1] = Math.max(dp[i][1],
                Math.max(dp[i - 2][0],
                          dp[i - 2][1]) + b[i]);
        }
        else 
        {
            
            // If i = 1, then consider the
            // value of  dp[i][1] as b[i]
            dp[i][1] = Math.max(dp[i][1], b[i]);
        }
    }

    // Return maximum Sum
    return Math.max(dp[n - 1][0], dp[n - 1][1]);
}

// Driver Code

// Given Input
let A = [ 10, 1, 10, 10 ];
let B = [ 5, 50, 1, 5 ];
let N = A.length;

// Function Call
document.write(MaximumSum(A, B, N));

// This code is contributed by gfgking

</script>

Output
70

Time Complexity: O(N)
Auxiliary Space: O(N)

Efficient Approach - Space optimization: In the previous approach, the current value dp[i] is only dependent upon the just previous values i.e., dp[i - 1]. So to optimize the space we can keep track of previous and current values with the help of variables prev_max_a, prev_max_b and curr_max_a, curr_max_b which will reduce the space complexity from O(N) to O(1). Below are the steps:

  • Create variables prev_max_a and prev_max_b to keep track of previous values of DP.
  • Initialize base case prev_max_a = a[0] , prev_max_b = b[0].
  • Create a variable curr_max_a and curr_max_b to store the current value.
  • Iterate over the subproblem using loop and update curr_max_a and curr_max_b and after every iteration, update prev_max_a and prev_max_b for further iterations.
  • After the above steps, print the maximum of curr_max_a and curr_max_b.

Below is the implementation of the above approach:

C++
// C++ program for the above approach

#include <bits/stdc++.h>
using namespace std;

// Function to find the maximum sum
// that can be obtained from two given
// based on the following conditions
int MaximumSum(int a[], int b[], int n)
{
    int prev_max_a = a[0], curr_max_a = 0;
    int prev_max_b = b[0], curr_max_b = 0;
    
    // Traverse the array A[] and B[]
    for (int i = 1; i < n; i++) {
        
        // If A[i] is considered
        curr_max_a = max(prev_max_a, prev_max_b) + a[i];
        
        
        // If B[i] is not considered
        curr_max_b = max(prev_max_a, prev_max_b);

        // If B[i] is considered
        if (i - 2 >= 0) {
            curr_max_b = max(curr_max_b, max(prev_max_a, prev_max_b) + b[i]);
        }
        
        // If i = 1, then consider the
        // value of  dp[i][1] as b[i]
        else {
            curr_max_b = max(curr_max_b, b[i]);
        }
    
        // assigning values to iterate further
        prev_max_a = curr_max_a;
        prev_max_b = curr_max_b;
    }

    // Return maximum Sum
    return max(curr_max_a, curr_max_b);
}

// Driver Code
int main()
{
    // Given Input
    int A[] = { 10, 1, 10, 10 };
    int B[] = { 5, 50, 1, 5 };
    int N = sizeof(A) / sizeof(A[0]);

    // Function Call
    cout << MaximumSum(A, B, N);
    return 0;
}

// --- by bhardwajji
Java
import java.util.*;

public class MaximumSumTwoArrays {
    public static int maximumSum(int[] a, int[] b, int n) {
        int prevMaxA = a[0];
        int currMaxA = 0;
        int prevMaxB = b[0];
        int currMaxB = 0;

        for (int i = 1; i < n; i++) {
            // If A[i] is considered
            currMaxA = Math.max(prevMaxA, prevMaxB) + a[i];

            // If B[i] is not considered
            currMaxB = Math.max(prevMaxA, prevMaxB);

            // If B[i] is considered
            if (i - 2 >= 0) {
                currMaxB = Math.max(currMaxB, Math.max(prevMaxA, prevMaxB) + b[i]);
            } else {
                // If i = 1, then consider the value of b[i]
                currMaxB = Math.max(currMaxB, b[i]);
            }

            // Assigning values to iterate further
            prevMaxA = currMaxA;
            prevMaxB = currMaxB;
        }

        // Return maximum sum
        return Math.max(currMaxA, currMaxB);
    }

    public static void main(String[] args) {
        // Given Input
        int[] A = { 10, 1, 10, 10 };
        int[] B = { 5, 50, 1, 5 };
        int N = A.length;

        // Function Call
        System.out.println(maximumSum(A, B, N));
    }
}
Python
# Python program for the above approach

# Function to find the maximum sum
# that can be obtained from two given
# based on the following conditions
def MaximumSum(a, b, n):

    prev_max_a = a[0]
    curr_max_a = 0
    prev_max_b = b[0]
    curr_max_b = 0
    
    # Traverse the array A[] and B[]
    for i in range(1, n):
        
        # If A[i] is considered
        curr_max_a = max(prev_max_a, prev_max_b) + a[i]
        
        
        # If B[i] is not considered
        curr_max_b = max(prev_max_a, prev_max_b)

        # If B[i] is considered
        if i - 2 >= 0:
            curr_max_b = max(curr_max_b, max(prev_max_a, prev_max_b) + b[i])
        
        # If i = 1, then consider the
        # value of dp[i][1] as b[i]
        else:
            curr_max_b = max(curr_max_b, b[i])
    
        # assigning values to iterate further
        prev_max_a = curr_max_a
        prev_max_b = curr_max_b

    # Return maximum Sum
    return max(curr_max_a, curr_max_b)

# Driver Code
if __name__ == '__main__':
    # Given Input
    A = [10, 1, 10, 10]
    B = [5, 50, 1, 5]
    N = len(A)

    # Function Call
    print(MaximumSum(A, B, N))
C#
using System;

class Program {
    // Function to find the maximum sum
    // that can be obtained from two given
    // arrays based on the following conditions
    static int MaximumSum(int[] a, int[] b, int n)
    {
        int prevMaxA = a[0], currMaxA = 0;
        int prevMaxB = b[0], currMaxB = 0;

        // Traverse the arrays A[] and B[]
        for (int i = 1; i < n; i++) {
            // If A[i] is considered
            currMaxA = Math.Max(prevMaxA, prevMaxB) + a[i];

            // If B[i] is not considered
            currMaxB = Math.Max(prevMaxA, prevMaxB);

            // If B[i] is considered
            if (i - 2 >= 0) {
                currMaxB = Math.Max(
                    currMaxB,
                    Math.Max(prevMaxA, prevMaxB) + b[i]);
            }

            // If i = 1, then consider the
            // value of dp[i][1] as b[i]
            else {
                currMaxB = Math.Max(currMaxB, b[i]);
            }

            // Assigning values to iterate further
            prevMaxA = currMaxA;
            prevMaxB = currMaxB;
        }

        // Return maximum Sum
        return Math.Max(currMaxA, currMaxB);
    }

    // Driver Code
    static void Main()
    {
        // Given Input
        int[] A = { 10, 1, 10, 10 };
        int[] B = { 5, 50, 1, 5 };
        int N = A.Length;

        // Function Call
        Console.WriteLine(MaximumSum(A, B, N));
    }
}
JavaScript
// Function to find the maximum sum
// that can be obtained from two given
// based on the following conditions
function MaximumSum(a, b, n) {

    let prev_max_a = a[0];
    let curr_max_a = 0;
    let prev_max_b = b[0];
    let curr_max_b = 0;

    // Traverse the array A[] and B[]
    for (let i = 1; i < n; i++) {

        // If A[i] is considered
        curr_max_a = Math.max(prev_max_a, prev_max_b) + a[i];


        // If B[i] is not considered
        curr_max_b = Math.max(prev_max_a, prev_max_b);

        // If B[i] is considered
        if (i - 2 >= 0) {
            curr_max_b = Math.max(curr_max_b, Math.max(prev_max_a, prev_max_b) + b[i]);
        }

        // If i = 1, then consider the
        // value of dp[i][1] as b[i]
        else {
            curr_max_b = Math.max(curr_max_b, b[i]);
        }

        // assigning values to iterate further
        prev_max_a = curr_max_a;
        prev_max_b = curr_max_b;
    }

    // Return maximum Sum
    return Math.max(curr_max_a, curr_max_b);
}

// Given Input
const A = [10, 1, 10, 10];
const B = [5, 50, 1, 5];
const N = A.length;

// Function Call
console.log(MaximumSum(A, B, N));

Output
70

Time Complexity: O(N)
Auxiliary Space: O(1)


Article Tags :

Similar Reads