Maximize sum of product and difference between any pair of array elements possible
Last Updated :
23 Jul, 2025
Given an array arr[] of size N, the task is to find the maximum value of arr[i] ∗ arr[j] + arr[i] − arr[j] for any pair (arr[i], arr[j]) from the given array, where i != j and 0 < i, j < N - 1.
Examples:
Input: arr[] = {1, 2, 3, 4, 5}
Output: 21
Explanation:
Among all the pairs of the array, the maximum value is obtained for the pair (arr[4], arr[3]), which is equal to
=> arr[4] * arr[3] + arr[4] - arr[3] = 5 * 4 + 5 - 4 = 20 + 1 = 21.
Input: {-4, -5, 0, 1, 3}
Output: 21
Explanation:
Among all the pairs of the array, the maximum value is obtained for the pair (arr[0], arr[1]), which is equal to
=> arr[0] * arr[1] + arr[0] - arr[1] = (-4) * (-5) + (-4) - (-5) = 20 + 1 = 21.
Naive Approach: The simplest approach to solve the problem is to traverse the array and generate all possible pairs (arr[i], arr[j]) (i != j) from the array and evaluate the expression for all the pairs. Finally, print the maximum of all the pairs.
Below is the implementation of the approach:
C++
// C++ code for the approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the maximum value of arr[i] * arr[j] + arr[i] - arr[j]
int maxProductSum(int arr[], int N) {
int maxSum = INT_MIN;
// Generate all possible pairs (arr[i], arr[j])
for (int i = 0; i < N - 1; i++) {
for (int j = i + 1; j < N; j++) {
// Evaluate the expression for each pair
// consider two permutation of pair for any 2 particular elements
int sum1 = (arr[i] * arr[j]) + (arr[i] - arr[j]);
int sum2 = (arr[j] * arr[i]) + (arr[j] - arr[i]);
// taking maximum expression value among two permutations
int sum = max(sum1, sum2);
// Update the maximum value
maxSum = max(maxSum, sum);
}
}
// Return the maximum value
return maxSum;
}
// Driver code
int main() {
int arr[] = { -4, -5, 0, 1, 3 };
int N = sizeof(arr) / sizeof(arr[0]);
// Function call to find the maximum value
int maxSum = maxProductSum(arr, N);
// Print the maximum value
cout << maxSum << endl;
return 0;
}
Java
// Java code for the approach
import java.util.*;
public class GFG {
// Function to find the maximum value of arr[i] * arr[j]
// + arr[i] - arr[j]
static int maxProductSum(int[] arr, int N)
{
int maxSum = Integer.MIN_VALUE;
// Generate all possible pairs (arr[i], arr[j])
for (int i = 0; i < N - 1; i++) {
for (int j = i + 1; j < N; j++) {
// Evaluate the expression for each pair
// consider two permutation of pair for any
// 2 particular elements
int sum1
= (arr[i] * arr[j]) + (arr[i] - arr[j]);
int sum2
= (arr[j] * arr[i]) + (arr[j] - arr[i]);
// taking maximum expression value among two
// permutations
int sum = Math.max(sum1, sum2);
// Update the maximum value
maxSum = Math.max(maxSum, sum);
}
}
// Return the maximum value
return maxSum;
}
// Driver code
public static void main(String[] args)
{
int[] arr = { -4, -5, 0, 1, 3 };
int N = arr.length;
// Function call to find the maximum value
int maxSum = maxProductSum(arr, N);
// Print the maximum value
System.out.println(maxSum);
}
}
Python3
# Python3 code for the approach
import sys
# Function to find the maximum value of arr[i] * arr[j] + arr[i] - arr[j]
def maxProductSum(arr, N):
maxSum = -sys.maxsize
# Generate all possible pairs (arr[i], arr[j])
for i in range(N - 1):
for j in range(i + 1, N):
# Evaluate the expression for each pair
sum1 = (arr[i] * arr[j]) + (arr[i] - arr[j])
sum2 = (arr[j] * arr[i]) + (arr[j] - arr[i])
# Taking maximum expression value among two permutations
sum = max(sum1, sum2)
# Update the maximum value
maxSum = max(maxSum, sum)
# Return the maximum value
return maxSum
# Driver code
if __name__ == '__main__':
# Input array
arr = [-4, -5, 0, 1, 3]
N = len(arr)
# Function call to find the maximum value
maxSum = maxProductSum(arr, N)
# Print the maximum value
print(maxSum)
C#
using System;
public class GFG
{
// Function to find the maximum value of arr[i] * arr[j]
// + arr[i] - arr[j]
static int MaxProductSum(int[] arr, int N)
{
int maxSum = int.MinValue;
// Generate all possible pairs (arr[i], arr[j])
for (int i = 0; i < N - 1; i++)
{
for (int j = i + 1; j < N; j++)
{
// Evaluate the expression for each pair
// consider two permutation of pair for any
// 2 particular elements
int sum1 = (arr[i] * arr[j]) + (arr[i] - arr[j]);
int sum2 = (arr[j] * arr[i]) + (arr[j] - arr[i]);
// taking maximum expression value among two
// permutations
int sum = Math.Max(sum1, sum2);
// Update the maximum value
maxSum = Math.Max(maxSum, sum);
}
}
// Return the maximum value
return maxSum;
}
// Driver code
static void Main(string[] args)
{
int[] arr = { -4, -5, 0, 1, 3 };
int N = arr.Length;
// Function call to find the maximum value
int maxSum = MaxProductSum(arr, N);
// Print the maximum value
Console.WriteLine(maxSum);
}
}
JavaScript
// Function to find the maximum value of arr[i] * arr[j] + arr[i] - arr[j]
function maxProductSum(arr, N) {
let maxSum = -Infinity;
// Generate all possible pairs (arr[i], arr[j])
for (let i = 0; i < N - 1; i++) {
for (let j = i + 1; j < N; j++) {
// Evaluate the expression for each pair
const sum1 = arr[i] * arr[j] + arr[i] - arr[j];
const sum2 = arr[j] * arr[i] + arr[j] - arr[i];
// Taking maximum expression value among two permutations
const sum = Math.max(sum1, sum2);
// Update the maximum value
maxSum = Math.max(maxSum, sum);
}
}
// Return the maximum value
return maxSum;
}
// Driver code
const arr = [-4, -5, 0, 1, 3];
const N = arr.length;
// Function call to find the maximum value
const maxSum = maxProductSum(arr, N);
// Print the maximum value
console.log(maxSum);
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: The optimal idea is based on the observation that the value of the expression can be maximum for the following 2 cases:
Follow the steps below to solve the problem:
- Sort the array arr[] in ascending order.
- Evaluate the expression for the pair arr[N - 1] and arr[N - 2] and store it in a variable, say max1.
- Similarly, evaluate the expression for the pair arr[1] and arr[0] and store it in a variable, say max2.
- Store the maximum of max1 and max2 in a variable, say ans.
- Print the value of ans as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to evaluate given expression
int compute(int a, int b)
{
// Store the result
int ans = a * b + a - b;
return ans;
}
// Function to find the maximum value of
// the given expression possible for any
// unique pair from the given array
void findMaxValue(int arr[], int N)
{
// Sort the array in ascending order
sort(arr, arr + N);
// Evaluate the expression for
// the two largest elements
int maxm = compute(arr[N - 1], arr[N - 2]);
// Evaluate the expression for
// the two smallest elements
maxm = max(maxm, compute(arr[1], arr[0]));
// Print the maximum
cout << maxm;
}
// Driver Code
int main()
{
// Given array
int arr[] = { -4, -5, 0, 1, 3 };
// Store the size of the array
int N = sizeof(arr) / sizeof(arr[0]);
findMaxValue(arr, N);
return 0;
}
Java
// Java program for the above approach
import java.io.*;
import java.util.*;
class GFG
{
// Function to evaluate given expression
static int compute(int a, int b)
{
// Store the result
int ans = a * b + a - b;
return ans;
}
// Function to find the maximum value of
// the given expression possible for any
// unique pair from the given array
static void findMaxValue(int arr[], int N)
{
// Sort the array in ascending order
Arrays.sort(arr);
// Evaluate the expression for
// the two largest elements
int maxm = compute(arr[N - 1], arr[N - 2]);
// Evaluate the expression for
// the two smallest elements
maxm = Math.max(maxm, compute(arr[1], arr[0]));
// Print the maximum
System.out.print(maxm);
}
// Driver Code
public static void main(String[] args)
{
// Given array
int arr[] = { -4, -5, 0, 1, 3 };
// Store the size of the array
int N = arr.length;
findMaxValue(arr, N);
}
}
// This code is contributed by saanjoy_62
Python3
# Python Program for the above approach
# Function to evaluate given expression
def compute(a, b):
# Store the result
res = (a * b) + (a - b)
return res
# Function to find the maximum value of
# the given expression possible for any
# unique pair from the given array
def findMaxValue(arr, N):
# Sort the list in ascending order
arr.sort()
# Evaluate the expression for
# the two largest elements
maxm = compute(arr[N - 1], arr[N - 2])
# Evaluate the expression for
# the two smallest elements
maxm = max(maxm, compute(arr[1], arr[0]));
print(maxm)
# Driver code
# given list
arr = [-4, -5, 0, 1, 3]
# store the size of the list
N = len(arr)
findMaxValue(arr, N)
# This code is contributed by santhoshcharan.
C#
// C# program for above approach
using System;
public class GFG
{
// Function to evaluate given expression
static int compute(int a, int b)
{
// Store the result
int ans = a * b + a - b;
return ans;
}
// Function to find the maximum value of
// the given expression possible for any
// unique pair from the given array
static void findMaxValue(int[] arr, int N)
{
// Sort the array in ascending order
Array.Sort(arr);
// Evaluate the expression for
// the two largest elements
int maxm = compute(arr[N - 1], arr[N - 2]);
// Evaluate the expression for
// the two smallest elements
maxm = Math.Max(maxm, compute(arr[1], arr[0]));
// Print the maximum
Console.WriteLine(maxm);
}
// Driver code
public static void Main(String[] args)
{
// Given array
int[] arr = { -4, -5, 0, 1, 3 };
// Store the size of the array
int N = arr.Length;
findMaxValue(arr, N);
}
}
// This code is contributed by susmitakundugoaldanga.
JavaScript
<script>
// Javascript implementation of the above approach
// Function to evaluate given expression
function compute(a, b)
{
// Store the result
var ans = a * b + a - b;
return ans;
}
// Function to find the maximum value of
// the given expression possible for any
// unique pair from the given array
function findMaxValue(arr, N)
{
// Sort the array in ascending order
arr.sort(function(a,b){return a - b});
// Evaluate the expression for
// the two largest elements
var maxm = compute(arr[N - 1], arr[N - 2]);
// Evaluate the expression for
// the two smallest elements
maxm = Math.max(maxm, compute(arr[1], arr[0]));
// Print the maximum
document.write(maxm);
}
// Driver Code
var arr = [-4, -5, 0, 1, 3];
var N = arr.length;
findMaxValue(arr, N);
// This code is contributed by Shubhamsingh10
</script>
Time Complexity: O(N*log(N))
Auxiliary Space: O(1)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem