Maximize count of distinct elements possible in an Array from the given operation
Last Updated :
15 Jul, 2025
Given an array A[] of size N, the task is to maximize the count of distinct elements in the array by inserting the absolute differences of the existing array elements.
Examples:
Input: A[] = {1, 2, 3, 5}
Output: 5
Explanation:
Possible absolute differences among the array elements are:
(2 - 1) = 1
(5 - 3) = 2
(5 - 2) = 3
(5 - 1) = 4
Hence, inserting 4 into the array maximizes the count of distinct elements.
Input: A[] = {1, 2, 3, 6}
Output: 6
Naive Approach:
Generate all possible pairs from the array and store their absolute differences in a set. Insert all the array elements into the set. The final size of the set denotes the maximum distinct elements that the array can possess after performing given operations.
Time Complexity: O(N2)
Auxiliary Space: O(N)
Efficient Approach:
Follow the steps below to optimize the above approach:
- Find the maximum element of the array.The maximum possible absolute difference of any two elements does not exceed the maximum element of the array.
- Calculate the GCD of the array, since it is the common factor of the whole array.
- Divide the maximum element with the gcd of the array to get the count of the distinct elements.
Below is the implementation of the above approach:
C++
// C++ program to find the maximum
// possible distinct elements that
// can be obtained from the array
// by performing the given operations
#include <bits/stdc++.h>
using namespace std;
// Function to find the gcd
// of two numbers
int gcd(int x, int y)
{
if (x == 0)
return y;
return gcd(y % x, x);
}
// Function to calculate and return
// the count of maximum possible
// distinct elements in the array
int findDistinct(int arr[], int n)
{
// Find the maximum element
int maximum = *max_element(arr,
arr + n);
// Base Case
if (n == 1)
return 1;
if (n == 2) {
return (maximum / gcd(arr[0],
arr[1]));
}
// Finding the gcd of first
// two element
int k = gcd(arr[0], arr[1]);
// Calculate Gcd of the array
for (int i = 2; i < n; i++) {
k = gcd(k, arr[i]);
}
// Return the total count
// of distinct elements
return (maximum / k);
}
// Driver Code
int main()
{
int arr[] = { 1, 2, 3, 5 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << findDistinct(arr, n);
return 0;
}
Java
// Java program to find the maximum
// possible distinct elements that
// can be obtained from the array
// by performing the given operations
import java.util.*;
class GFG{
// Function to find the gcd
// of two numbers
static int gcd(int x, int y)
{
if (x == 0)
return y;
return gcd(y % x, x);
}
// Function to calculate and return
// the count of maximum possible
// distinct elements in the array
static int findDistinct(int arr[], int n)
{
// Find the maximum element
int maximum = Arrays.stream(arr).max().getAsInt();
// Base Case
if (n == 1)
return 1;
if (n == 2)
{
return (maximum / gcd(arr[0],
arr[1]));
}
// Finding the gcd of first
// two element
int k = gcd(arr[0], arr[1]);
// Calculate Gcd of the array
for(int i = 2; i < n; i++)
{
k = gcd(k, arr[i]);
}
// Return the total count
// of distinct elements
return (maximum / k);
}
// Driver code
public static void main (String[] args)
{
int arr[] = { 1, 2, 3, 5 };
int n = arr.length;
System.out.println(findDistinct(arr, n));
}
}
// This code is contributed by offbeat
Python3
# Python3 program to find the maximum
# possible distinct elements that
# can be obtained from the array
# by performing the given operations
# Function to find the gcd
# of two numbers
def gcd(x, y):
if (x == 0):
return y
return gcd(y % x, x)
# Function to calculate and return
# the count of maximum possible
# distinct elements in the array
def findDistinct(arr, n):
# Find the maximum element
maximum = max(arr)
# Base Case
if (n == 1):
return 1
if (n == 2):
return (maximum // gcd(arr[0],
arr[1]))
# Finding the gcd of first
# two element
k = gcd(arr[0], arr[1])
# Calculate Gcd of the array
for i in range(2, n):
k = gcd(k, arr[i])
# Return the total count
# of distinct elements
return (maximum // k)
# Driver Code
if __name__ == '__main__':
arr = [ 1, 2, 3, 5 ]
n = len(arr)
print(findDistinct(arr, n))
# This code is contributed by mohit kumar 29
C#
// C# program to find the maximum
// possible distinct elements that
// can be obtained from the array
// by performing the given operations
using System;
using System.Linq;
class GFG{
// Function to find the gcd
// of two numbers
static int gcd(int x, int y)
{
if (x == 0)
return y;
return gcd(y % x, x);
}
// Function to calculate and return
// the count of maximum possible
// distinct elements in the array
static int findDistinct(int []arr, int n)
{
// Find the maximum element
int maximum = arr.Max();
// Base Case
if (n == 1)
return 1;
if (n == 2)
{
return (maximum / gcd(arr[0],
arr[1]));
}
// Finding the gcd of first
// two element
int k = gcd(arr[0], arr[1]);
// Calculate Gcd of the array
for (int i = 2; i < n; i++)
{
k = gcd(k, arr[i]);
}
// Return the total count
// of distinct elements
return (maximum / k);
}
// Driver Code
public static void Main()
{
int []arr = { 1, 2, 3, 5 };
int n = arr.Length;
Console.Write(findDistinct(arr, n));
}
}
// This code is contributed by Code_Mech
JavaScript
<script>
// Javascript program to find the maximum
// possible distinct elements that
// can be obtained from the array
// by performing the given operations
// Function to find the gcd
// of two numbers
function gcd(x, y)
{
if (x == 0)
return y;
return gcd(y % x, x);
}
// Function to calculate and return
// the count of maximum possible
// distinct elements in the array
function findDistinct(arr, n)
{
// Find the maximum element
let maximum = Math.max(...arr);
// Base Case
if (n == 1)
return 1;
if (n == 2)
{
return (maximum / gcd(arr[0],
arr[1]));
}
// Finding the gcd of first
// two element
let k = gcd(arr[0], arr[1]);
// Calculate Gcd of the array
for(let i = 2; i < n; i++)
{
k = gcd(k, arr[i]);
}
// Return the total count
// of distinct elements
return (maximum / k);
}
// Driver Code
let arr = [ 1, 2, 3, 5 ];
let n = arr.length;
document.write(findDistinct(arr, n));
</script>
Time Complexity: O(N)
Auxiliary Space: O(1)
Similar Reads
Maximize count of distinct elements in a subsequence of size K in given array Given an array arr[] of N integers and an integer K, the task is to find the maximum count of distinct elements over all the subsequences of K integers. Example: Input: arr[]={1, 1, 2, 2}, K=3Output: 2Explanation: The subsequence {1, 1, 2} has 3 integers and the number of distinct integers in it are
4 min read
Count ways to fill Array with distinct elements with given limitation Given an array arr[] of size N and you need to fill another empty array of size N with positive integers. Each element in the given array denotes the maximum positive integer you can choose to fill the empty array. The task is to find the number of ways to fill the empty array such that all elements
6 min read
Maximize count of corresponding same elements in given Arrays by Rotation Given two arrays arr1[] and arr2[] of N integers and array arr1[] has distinct elements. The task is to find the maximum count of corresponding same elements in the given arrays by performing cyclic left or right shift on array arr1[]. Examples: Input: arr1[] = { 6, 7, 3, 9, 5 }, arr2[] = { 7, 3, 9,
8 min read
Maximize the count of distinct elements in Array after at most K changes Given an array arr[], the task is to find the maximum number of distinct numbers in arr after at most K changes. In each change pick any element X from arr and change it to Y such that L <= Y <= R. Examples: Input: arr[] = {1, 2, 1, 4, 6, 4, 4}, L = 1, R = 5 and K = 2Output: 6Explanation: Foll
8 min read
Minimize operations to make all the elements of given Subarrays distinct Given an arr[] of positive integers and start[] and end[] arrays of length L, Which contains the start and end indexes of L number of non-intersecting sub-arrays as a start[i] and end[i] for all (1 ? i ? L). An operation is defined as below: Select an ordered continuous or non - continuous part of t
11 min read
Maximize first array element by performing given operations at most K times Given an array arr[] of size N an integer K, the task is to find the maximize the first element of the array by performing the following operations at most K times: Choose a pair of indices i and j (0 ? i, j ? N-1) such that |i ? j| = 1 and arri > 0.Set arri = arri ? 1 and arrj = arrj + 1 on thos
7 min read