Matplotlib.colors.LogNorm class in Python Last Updated : 12 Jul, 2025 Comments Improve Suggest changes Like Article Like Report Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack. matplotlib.colors.LogNorm() The matplotlib.colors.LogNorm() class belongs to the matplotlib.colors module. The matplotlib.colors module is used for converting color or numbers arguments to RGBA or RGB.This module is used for mapping numbers to colors or color specification conversion in a 1-D array of colors also known as colormap. The matplotlib.colors.LogNorm class is used to normalize a value to the range of 0-1 on a log scale. If vmax or vmin is not set, they are initialized from the maximum and minimum value of the first input processed respectively. This means __call__(A) calls autoscale_None(A). If the clip is set to True and the value given falls outside range, the value returned is 0 or 1, whichever is closest. If vmin==vmax than it returns 0. It works with arrays or scalars that also includes masked arrays. If the clip is set True the masked values are set to else they remain masked. The default of the clip is set to False. Methods of the class: autoscale(self, A): It is used to set the vmax, vmin to maximum and minimum of A respectively. autoscale_None(self, A): It is used to autoscale only the none-valued vmin or vmax. inverse(self, value): It returns reversed value of the colormap. Example 1: Python3 1== import matplotlib.pyplot as plt import numpy as np from matplotlib import colors from matplotlib.ticker import PercentFormatter # Setting random state for # reproducibility np.random.seed(19680801) max_points = 100000 all_bins = 20 # Generate a normal distribution, # center at x = 0 and y = 5 a = np.random.randn(max_points) b = .4 * a + np.random.randn(100000) + 5 figure, axes = plt.subplots(3, 1, figsize =(5, 15), sharex = True, sharey = True, tight_layout = True) # Incrementing the number of # bins on each axis axes[0].hist2d(a, b, bins = 40) # Defining normalization of # the colors axes[1].hist2d(a, b, bins = 40, norm = colors.LogNorm()) # defining custom numbers of bins # for each axis axes[2].hist2d(a, b, bins =(80, 10), norm = colors.LogNorm()) plt.show() Output: Example 2: Python3 1== import matplotlib.pyplot as plt import numpy as np from matplotlib.colors import LogNorm N = 100 A, B = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)] X1 = np.exp(-(A)**2 - (B)**2) X2 = np.exp(-(A * 10)**2 - (B * 10)**2) X = X1 + 50 * X2 figure, (axes0, axes1) = plt.subplots(2, 1) P = axes0.pcolor(A, B, X, norm = LogNorm(vmin = X.min(), vmax = X.max()), cmap ='PuBu_r') figure.colorbar(P, ax = axes0) P = axes1.pcolor(A, B, X, cmap ='PuBu_r') figure.colorbar(P, ax = axes1) plt.show() Output: Create Quiz Comment R rajukumar19 Follow 0 Improve R rajukumar19 Follow 0 Improve Article Tags : Python Write From Home Python-Library Python-matplotlib Explore Python FundamentalsPython Introduction 2 min read Input and Output in Python 4 min read Python Variables 4 min read Python Operators 4 min read Python Keywords 2 min read Python Data Types 8 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 5 min read Python Functions 5 min read Recursion in Python 4 min read Python Lambda Functions 5 min read Python Data StructuresPython String 5 min read Python Lists 4 min read Python Tuples 4 min read Python Dictionary 3 min read Python Sets 6 min read Python Arrays 7 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 11 min read Python Exception Handling 5 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 3 min read Python MySQL 9 min read Python Packages 10 min read Python Modules 3 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 3 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 4 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 3 min read StatsModel Library - Tutorial 3 min read Learning Model Building in Scikit-learn 6 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 6 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 7 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 5 min read Build a REST API using Flask - Python 3 min read Building a Simple API with Django REST Framework 3 min read Python PracticePython Quiz 1 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like