Matplotlib.colors.DivergingNorm class in Python Last Updated : 12 Jul, 2025 Summarize Comments Improve Suggest changes Share Like Article Like Report Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack. matplotlib.colors.DivergingNorm The matplotlib.colors.DivergingNorm class belongs to the matplotlib.colors module. The matplotlib.colors module is used for converting color or numbers arguments to RGBA or RGB.This module is used for mapping numbers to colors or color specification conversion in a 1-D array of colors also known as colormap.The matplotlib.colors.DivergingNorm class is very useful while mapping data with uneven or unequal rate of change around a conceptual center. For instance data range between -2 to, with 0 as the center or mid-point. Syntax: matplotlib.colors.DivergingNorm(vcenter, vmin, vmax)Parameters: vcenter: It accepts a float valuethat defines the 0.5 data value in the normalization. vmin: It is an optional parameter that accepts float values and defines 0.0 data value in normalization which defaults to the minimum value of dataset. vmax: It is an optional parameter that accepts float values and defines 1.0 data value in normalization which defaults to the maximum value of dataset. Example 1: Python3 import numpy from matplotlib import pyplot as plt from matplotlib import colors # dummy data to plot x = numpy.linspace(0, 2*numpy.pi, 30) y = numpy.linspace(0, 2*numpy.pi, 20) [A, B] = numpy.meshgrid(x, y) Q = numpy.sin(A)*numpy.cos(B) fig = plt.figure() plt.ion() # yellow to green to red # colormap plt.set_cmap('brg') ax = fig.add_subplot(1, 2, 1) plt.pcolor(A, B, Q) plt.colorbar() ax = fig.add_subplot(1, 2, 2) # defining the scale, with white # at zero vmin = -0.2 vmax = 0.8 norms = colors.DivergingNorm(vmin=vmin, vcenter=0, vmax=vmax) plt.pcolor(A, B, Q, vmin=vmin, vmax=vmax, norm=norms) plt.colorbar() Output: Example 2: Python3 import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook import matplotlib.colors as colors file = cbook.get_sample_data('topobathy.npz', asfileobj = False) with np.load(file) as example: topo = example['topo'] longi = example['longitude'] latit = example['latitude'] figure, axes = plt.subplots(constrained_layout = True) # creating a colormap that # has land and ocean clearly # delineated and of the # same length (256 + 256) undersea = plt.cm.terrain(np.linspace(0, 0.17, 256)) land = plt.cm.terrain(np.linspace(0.25, 1, 256)) every_colors = np.vstack((undersea, land)) terrain_map = colors.LinearSegmentedColormap.from_list('terrain_map', every_colors) # the center is offset so that # the land has more dynamic range # while making the norm diversity_norm = colors.DivergingNorm(vmin =-500, vcenter = 0, vmax = 4000) pcm = axes.pcolormesh(longi, latit, topo, rasterized = True, norm = diversity_norm, cmap = terrain_map, ) axes.set_xlabel('Longitude $[^o E]$') axes.set_ylabel('Latitude $[^o N]$') axes.set_aspect(1 / np.cos(np.deg2rad(49))) figure.colorbar(pcm, shrink = 0.6, extend ='both', label ='Elevation [m]') plt.show() Output: Comment More infoAdvertise with us Next Article Matplotlib.colors.Normalize class in Python R RajuKumar19 Follow Improve Article Tags : Python Write From Home Python-Library Python-matplotlib Practice Tags : python Similar Reads Matplotlib.colors.LogNorm class in Python Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack. matplotlib.colors.LogNorm() The matplotlib.colors.LogNorm() class belongs to the matplot 3 min read Matplotlib.colors.ListedColormap class in Python Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.Matplotlib.colors.ListedColormapThe matplotlib.colors.ListedColormap class belongs to the 4 min read Matplotlib.colors.LinearSegmentedColormap class in Python Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack. matplotlib.colors.LinearSegmentedColarmap The matplotlib.colors.LinearSegmentedColarmap 5 min read Matplotlib.colors.Normalize class in Python Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.  matplotlib.colors.Normalize The matplotlib.colors.Normalize class belongs to the matpl 3 min read Matplotlib.colors.PowerNorm class in Python Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack. matplotlib.colors.PowerNor The matplotlib.colors.PowerNorm class belongs to the matplot 2 min read Matplotlib.colors.SymLogNorm class in Python Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack. Note: For more information, refer to Python Matplotlib â An Overview matplotlib.colors.S 3 min read Like