Make Array elements equal by replacing adjacent elements with their XOR
Last Updated :
23 Jul, 2025
Given an array A[] consisting of N integers, the task is to check if it is possible to reduce array of at least length 2 such that all the elements in the array are equal. In an operation, choose any index i, and replace A[i] and A[i+1] with their XOR value.
Example:
Input: A[] = {0, 2, 2}
Output: YES
Explanation: Apply the given operation for i=0 (zero based indexing). Therefore, replace A[0] and A[1] to A[0]^A[1] i.e., 0^2->2. The resulting array is {2, 2} having all the elements equal.
Input: A[] = {2, 3, 1, 10}
Output: NO
Explanation: There is no possible way for the array to have all equal elements
Naive Approach: The above problem can be solved using the observation that the given array can be reduced to an array with either two equal elements or three equal elements. Below are the steps by step approach to solve the above problem:
- Create a prefix array in which the ith index stores the XOR of elements from index 0 to i of the array A[].
- Case 1 where the array can be reduced to two equal elements
- Suppose the resulting array is {X, X}. Since the XOR of all elements of the array will remain constant, therefore X^X=0=XOR( A[0...N-1]). This case can be easily handled by checking if the XOR of all the elements of the array is 0.
- Case 2 where the array can be reduced to three equal elements
- This case can be handled by iterating over all the possible values of (i, j) such that 0<= i < j <=N-1 and check if there exist a value of (i, j) such that XOR(A[0...i]) = XOR(A[i+1...j]) = XOR(A[j+1...N]).
Below is the implementation of the above approach:
C++
// C++ Program of the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to check if it is possible
// to make all the array elements equal
// using the given operation
void possibleEqualArray(int A[], int N)
{
// Stores the prefix XOR array
vector<int> pref(N);
pref[0] = A[0];
for (int i = 1; i < N; i++) {
// Calculate prefix[i]
pref[i] = pref[i - 1] ^ A[i];
}
// Case 1, check if the XOR of
// the input array is 0
if (pref[N - 1] == 0) {
cout << "YES";
return;
}
// Case 2
// Iterate over all the ways to
// divide the array into three
// non empty subarrays
int cur_xor = 0;
for (int i = N - 1; i >= 0; i--) {
cur_xor ^= A[i];
for (int j = 0; j < i; j++) {
if (j) {
// XOR of Middle Block
int middle_xor
= pref[j - 1] ^ pref[i - 1];
// XOR of Left Block
int left_xor = pref[j - 1];
// XOR of Right Block
int right_xor = cur_xor;
if (left_xor == middle_xor
&& middle_xor == right_xor) {
cout << "YES";
return;
}
}
}
}
// Not Possible
cout << "NO";
}
// Driver Code
int main()
{
int A[] = { 0, 2, 2 };
int N = sizeof(A) / sizeof(int);
// Function Call
possibleEqualArray(A, N);
return 0;
}
Java
// Java program for the above approach
import java.io.*;
class GFG
{
// Function to check if it is possible
// to make all the array elements equal
// using the given operation
static void possibleEqualArray(int A[], int N)
{
// Stores the prefix XOR array
int[] pref= new int[N];
pref[0] = A[0];
for (int i = 1; i < N; i++) {
// Calculate prefix[i]
pref[i] = pref[i - 1] ^ A[i];
}
// Case 1, check if the XOR of
// the input array is 0
if (pref[N - 1] == 0) {
System.out.println("YES");
return;
}
// Case 2
// Iterate over all the ways to
// divide the array into three
// non empty subarrays
int cur_xor = 0;
for (int i = N - 1; i >= 0; i--) {
cur_xor ^= A[i];
for (int j = 0; j < i; j++) {
if (j!=0) {
// XOR of Middle Block
int middle_xor
= pref[j - 1] ^ pref[i - 1];
// XOR of Left Block
int left_xor = pref[j - 1];
// XOR of Right Block
int right_xor = cur_xor;
if (left_xor == middle_xor
&& middle_xor == right_xor) {
System.out.println( "YES");
return;
}
}
}
}
// Not Possible
System.out.println( "NO");
}
// Driver code
public static void main (String[] args)
{
int A[] = { 0, 2, 2 };
int N = A.length;
// Function Call
possibleEqualArray(A, N);
}
}
// This code is contributed by Potta Lokesh
Python3
# Python 3 Program of the above approach
# Function to check if it is possible
# to make all the array elements equal
# using the given operation
def possibleEqualArray(A, N):
# Stores the prefix XOR array
pref = [0 for i in range(N)]
pref[0] = A[0]
for i in range(1, N, 1):
# Calculate prefix[i]
pref[i] = pref[i - 1] ^ A[i]
# Case 1, check if the XOR of
# the input array is 0
if (pref[N - 1] == 0):
print("YES")
return
# Case 2
# Iterate over all the ways to
# divide the array into three
# non empty subarrays
cur_xor = 0
i = N - 1
while(i >= 0):
cur_xor ^= A[i]
for j in range(i):
if (j):
# XOR of Middle Block
middle_xor = pref[j - 1] ^ pref[i - 1]
# XOR of Left Block
left_xor = pref[j - 1]
# XOR of Right Block
right_xor = cur_xor
if (left_xor == middle_xor and middle_xor == right_xor):
print("YES")
return
i -= 1
# Not Possible
print("NO")
# Driver Code
if __name__ == '__main__':
A = [0, 2, 2]
N = len(A)
# Function Call
possibleEqualArray(A, N)
# This code is contributed by ipg2016107.
C#
// C# program for the above approach
using System;
public class GFG
{
// Function to check if it is possible
// to make all the array elements equal
// using the given operation
static void possibleEqualArray(int []A, int N)
{
// Stores the prefix XOR array
int[] pref= new int[N];
pref[0] = A[0];
for (int i = 1; i < N; i++) {
// Calculate prefix[i]
pref[i] = pref[i - 1] ^ A[i];
}
// Case 1, check if the XOR of
// the input array is 0
if (pref[N - 1] == 0) {
Console.WriteLine("YES");
return;
}
// Case 2
// Iterate over all the ways to
// divide the array into three
// non empty subarrays
int cur_xor = 0;
for (int i = N - 1; i >= 0; i--) {
cur_xor ^= A[i];
for (int j = 0; j < i; j++) {
if (j!=0) {
// XOR of Middle Block
int middle_xor
= pref[j - 1] ^ pref[i - 1];
// XOR of Left Block
int left_xor = pref[j - 1];
// XOR of Right Block
int right_xor = cur_xor;
if (left_xor == middle_xor
&& middle_xor == right_xor) {
Console.WriteLine( "YES");
return;
}
}
}
}
// Not Possible
Console.WriteLine( "NO");
}
// Driver code
public static void Main(String[] args)
{
int []A = { 0, 2, 2 };
int N = A.Length;
// Function Call
possibleEqualArray(A, N);
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// Javascript Program of the above approach
// Function to check if it is possible
// to make all the array elements equal
// using the given operation
function possibleEqualArray(A, N) {
// Stores the prefix XOR array
let pref = new Array(N);
pref[0] = A[0];
for (let i = 1; i < N; i++) {
// Calculate prefix[i]
pref[i] = pref[i - 1] ^ A[i];
}
// Case 1, check if the XOR of
// the input array is 0
if (pref[N - 1] == 0) {
document.write("YES");
return;
}
// Case 2
// Iterate over all the ways to
// divide the array into three
// non empty subarrays
let cur_xor = 0;
for (let i = N - 1; i >= 0; i--) {
cur_xor ^= A[i];
for (let j = 0; j < i; j++) {
if (j) {
// XOR of Middle Block
let middle_xor = pref[j - 1] ^ pref[i - 1];
// XOR of Left Block
let left_xor = pref[j - 1];
// XOR of Right Block
let right_xor = cur_xor;
if (left_xor == middle_xor && middle_xor == right_xor) {
document.write("YES");
return;
}
}
}
}
// Not Possible
document.write("NO");
}
// Driver Code
let A = [0, 2, 2];
let N = A.length;
// Function Call
possibleEqualArray(A, N);
// This code is contributed by _saurabh_jaiswal.
</script>
Time Complexity: O(N2)
Space Complexity: O(N)
Efficient Approach: The above approach can be optimized using the observation that in the case where the array can be reduced to the three equal elements, the resultant array can be represented as {X, X, X}. Since, (X^X^X) = XOR(A[0...N-1]) it implies that X = XOR(A[0...N-1]). Case 1 can be handled the same as that of the naive approach. Case 2 can be solved as follows:
- Initialize cnt and cur_XOR by 0, and store the XOR of all elements of A[] in tot_XOR.
- Iterate over array A[] and keep track of the XOR till the current element in cur_XOR.
- If cur_XOR = tot_XOR, increment the cnt by 1 and initialize cur_XOR = 0.
- After traversing the whole array, if the value of cnt > 2, it is possible to make all the elements of the array equal using the given operation.
Below is the implementation of the above approach:
C++
// C++ Program of the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to check if it is possible
// to make all the array elements equal
// using the given operation
void possibleEqualArray(int A[], int N)
{
// Stores the XOR of all
// elements of array A[]
int tot_XOR = 0;
for (int i = 0; i < N; i++) {
tot_XOR ^= A[i];
}
// Case 1, check if the XOR of
// the array A[] is 0
if (tot_XOR == 0) {
cout << "YES";
return;
}
// Case 2
// Maintains the XOR till
// the current element
int cur_XOR = 0;
int cnt = 0;
// Iterate over the array
for (int i = 0; i < N; i++) {
cur_XOR ^= A[i];
// If the current XOR is equal
// to the total XOR increment
// the count and initialize
// current XOR as 0
if (cur_XOR == tot_XOR) {
cnt++;
cur_XOR = 0;
}
}
// Print Answer
if (cnt > 2) {
cout << "YES";
}
else {
cout << "NO";
}
}
// Driver Code
int main()
{
int A[] = { 0, 2, 2 };
int N = sizeof(A) / sizeof(int);
// Function Call
possibleEqualArray(A, N);
return 0;
}
Java
// Java Program of the above approach
import java.util.*;
class GFG{
// Function to check if it is possible
// to make all the array elements equal
// using the given operation
static void possibleEqualArray(int A[], int N)
{
// Stores the XOR of all
// elements of array A[]
int tot_XOR = 0;
for (int i = 0; i < N; i++) {
tot_XOR ^= A[i];
}
// Case 1, check if the XOR of
// the array A[] is 0
if (tot_XOR == 0) {
System.out.print("YES");
return;
}
// Case 2
// Maintains the XOR till
// the current element
int cur_XOR = 0;
int cnt = 0;
// Iterate over the array
for (int i = 0; i < N; i++) {
cur_XOR ^= A[i];
// If the current XOR is equal
// to the total XOR increment
// the count and initialize
// current XOR as 0
if (cur_XOR == tot_XOR) {
cnt++;
cur_XOR = 0;
}
}
// Print Answer
if (cnt > 2) {
System.out.print("YES");
}
else {
System.out.print("NO");
}
}
// Driver Code
public static void main(String[] args)
{
int A[] = { 0, 2, 2 };
int N =( A.length);
// Function Call
possibleEqualArray(A, N);
}
}
// This code is contributed by 29AjayKumar
Python3
# Python 3 Program of the above approach
# Function to check if it is possible
# to make all the array elements equal
# using the given operation
def possibleEqualArray(A, N):
# Stores the XOR of all
# elements of array A[]
tot_XOR = 0
for i in range(N):
tot_XOR ^= A[i]
# Case 1, check if the XOR of
# the array A[] is 0
if (tot_XOR == 0):
print("YES")
return
# Case 2
# Maintains the XOR till
# the current element
cur_XOR = 0
cnt = 0
# Iterate over the array
for i in range(N):
cur_XOR ^= A[i]
# If the current XOR is equal
# to the total XOR increment
# the count and initialize
# current XOR as 0
if (cur_XOR == tot_XOR):
cnt += 1
cur_XOR = 0
# Print Answer
if (cnt > 2):
print("YES")
else:
print("NO")
# Driver Code
if __name__ == '__main__':
A = [0, 2, 2]
N = len(A)
# Function Call
possibleEqualArray(A, N)
# This code is contributed by SURENDRA_GANGWAR.
C#
// C# Program of the above approach
using System;
class GFG{
// Function to check if it is possible
// to make all the array elements equal
// using the given operation
static void possibleEqualArray(int []A, int N)
{
// Stores the XOR of all
// elements of array A[]
int tot_XOR = 0;
for (int i = 0; i < N; i++) {
tot_XOR ^= A[i];
}
// Case 1, check if the XOR of
// the array A[] is 0
if (tot_XOR == 0) {
Console.Write("YES");
return;
}
// Case 2
// Maintains the XOR till
// the current element
int cur_XOR = 0;
int cnt = 0;
// Iterate over the array
for (int i = 0; i < N; i++) {
cur_XOR ^= A[i];
// If the current XOR is equal
// to the total XOR increment
// the count and initialize
// current XOR as 0
if (cur_XOR == tot_XOR) {
cnt++;
cur_XOR = 0;
}
}
// Print Answer
if (cnt > 2) {
Console.Write("YES");
}
else {
Console.Write("NO");
}
}
// Driver Code
public static void Main(String[] args)
{
int []A = { 0, 2, 2 };
int N =( A.Length);
// Function Call
possibleEqualArray(A, N);
}
}
// This code is contributed by shivanisinghss2110.
JavaScript
<script>
// JavaScript Program of the above approach
// Function to check if it is possible
// to make all the array elements equal
// using the given operation
function possibleEqualArray( A, N)
{
// Stores the XOR of all
// elements of array A[]
var tot_XOR = 0;
for (var i = 0; i < N; i++) {
tot_XOR ^= A[i];
}
// Case 1, check if the XOR of
// the array A[] is 0
if (tot_XOR == 0) {
document.write("YES");
return;
}
// Case 2
// Maintains the XOR till
// the current element
var cur_XOR = 0;
var cnt = 0;
// Iterate over the array
for (var i = 0; i < N; i++) {
cur_XOR ^= A[i];
// If the current XOR is equal
// to the total XOR increment
// the count and initialize
// current XOR as 0
if (cur_XOR == tot_XOR) {
cnt++;
cur_XOR = 0;
}
}
// Print Answer
if (cnt > 2) {
document.write("YES");
}
else {
document.write("NO");
}
}
// Driver Code
var A = [ 0, 2, 2 ];
var N =( A.length);
// Function Call
possibleEqualArray(A, N);
// This code is contributed by shivanisinghss2110
</script>
Time Complexity: O(N)
Auxiliary Space: O(1)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem