Open In App

Make all array elements equal to 0 by replacing minimum subsequences consisting of equal elements

Last Updated : 23 Jul, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array arr[] of size N, the task is to make all array elements equal to 0 by replacing all elements of a subsequences of equal elements by any integer, minimum number of times.

Examples:

Input: arr[] = {3, 7, 3}, N = 3
Output: 2
Explanation:
Selecting a subsequence { 7 } and replacing all its elements by 0 modifies arr[] to { 3, 3, 3 }. 
Selecting the array { 3, 3, 3 } and replacing all its elements by 0 modifies arr[] to { 0, 0, 0 }

Input: arr[] = {1, 5, 1, 3, 2, 3, 1}, N = 7
Output: 4

 

Approach: The problem can be solved using Greedy technique. The idea is to count the distinct elements present in the array which is not equal to 0 and print the count obtained. Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++
// C++ program for the above approach

#include <bits/stdc++.h>
using namespace std;

// Function to find minimum count of operations
// required to convert all array elements to zero
// br replacing subsequence of equal elements to 0
void minOpsToTurnArrToZero(int arr[], int N)
{

    // Store distinct elements
    // present in the array
    unordered_set<int> st;

    // Traverse the array
    for (int i = 0; i < N; i++) {

        // If arr[i] is already present in
        // the Set or arr[i] is equal to 0
        if (st.find(arr[i]) != st.end()
            || arr[i] == 0) {
            continue;
        }

        // Otherwise, increment ans by
        // 1 and insert current element
        else {
            st.insert(arr[i]);
        }
    }

    cout << st.size() << endl;
}

// Driver Code
int main()
{

    // Given array
    int arr[] = { 3, 7, 3 };

    // Size of the given array
    int N = sizeof(arr) / sizeof(arr[0]);

    minOpsToTurnArrToZero(arr, N);

    return 0;
}
Java
// Java program for the above approach
import java.io.*;
import java.util.*;

class GFG {

    // Function to find minimum count of operations
    // required to convert all array elements to zero
    // br replacing subsequence of equal elements to 0
    static void minOpsToTurnArrToZero(int[] arr, int N)
    {

        // Store distinct elements
        // present in the array
        Set<Integer> st = new HashSet<Integer>();
        // Traverse the array
        for (int i = 0; i < N; i++) {

            // If arr[i] is already present in
            // the Set or arr[i] is equal to 0
            if (st.contains(arr[i]) || arr[i] == 0) {
                continue;
            }

            // Otherwise, increment ans by
            // 1 and insert current element
            else {
                st.add(arr[i]);
            }
        }

        System.out.println(st.size());
    }

    // Driver Code
    public static void main(String args[])
    {
        // Given array
        int arr[] = { 3, 7, 3 };

        // Size of the given array
        int N = arr.length;

        minOpsToTurnArrToZero(arr, N);
    }
}

// This code is contributed by 18bhupendrayadav18
Python3
# Python3 program for the above approach

# Function to find minimum count of 
# operations required to convert all 
# array elements to zero by replacing 
# subsequence of equal elements to 0
def minOpsToTurnArrToZero(arr, N):
    
    # Store distinct elements
    # present in the array
    st = dict() 

    # Traverse the array
    for i in range(N):

        # If arr[i] is already present in
        # the Set or arr[i] is equal to 0
        if (i in st.keys() or arr[i] == 0): 
            continue
        
        # Otherwise, increment ans by
        # 1 and insert current element
        else:
            st[arr[i]] = 1
            
    print(len(st))

# Driver Code

# Given array
arr = [ 3, 7, 3 ]

# Size of the given array
N = len(arr) 

minOpsToTurnArrToZero(arr, N)

# This code is contributed by susmitakundugoaldanga
C#
// C# program for the above approach
using System;
using System.Collections.Generic;

class GFG {

  // Function to find minimum count of operations
  // required to convert all array elements to zero
  // br replacing subsequence of equal elements to 0
  static void minOpsToTurnArrToZero(int[] arr, int N)
  {

    // Store distinct elements
    // present in the array
    HashSet<int> st = new HashSet<int>();

    // Traverse the array
    for (int i = 0; i < N; i++)
    {

      // If arr[i] is already present in
      // the Set or arr[i] is equal to 0
      if (st.Contains(arr[i]) || arr[i] == 0) 
      {
        continue;
      }

      // Otherwise, increment ans by
      // 1 and insert current element
      else
      {
        st.Add(arr[i]);
      }
    }
    Console.WriteLine(st.Count);
  }

  // Driver Code
  public static void Main(String []args)
  {

    // Given array
    int []arr = { 3, 7, 3 };

    // Size of the given array
    int N = arr.Length;
    minOpsToTurnArrToZero(arr, N);
  }
}

// This code is contributed by gauravrajput1 
JavaScript
<script>

// Javascript program for the above approach

// Function to find minimum count of operations
// required to convert all array elements to zero
// br replacing subsequence of equal elements to 0
function minOpsToTurnArrToZero(arr, N)
{
    
    // Store distinct elements
    // present in the array
    var st = new Set();

    // Traverse the array
    for(var i = 0; i < N; i++)
    {
        
        // If arr[i] is already present in
        // the Set or arr[i] is equal to 0
        if (st.has(arr[i]) || arr[i] == 0) 
        {
            continue;
        }

        // Otherwise, increment ans by
        // 1 and insert current element
        else 
        {
            st.add(arr[i]);
        }
    }
    document.write(st.size)
}

// Driver Code

// Given array
var arr = [ 3, 7, 3 ];

// Size of the given array
var N = arr.length;

minOpsToTurnArrToZero(arr, N);

// This code is contributed by noob2000

</script> 

Output: 
2

 

Time Complexity: O(N)
Auxiliary Space: O(N)


Similar Reads