Make all array elements equal by reducing array elements to half minimum number of times
Last Updated :
17 May, 2021
Given an array arr[] consisting of N integers, the task is to minimize the number of operations required to make all array elements equal by converting Ai to Ai / 2. in each operation
Examples:
Input: arr[] = {3, 1, 1, 3}
Output: 2
Explanation:
Reducing A0 to A0 / 2 modifies arr[] to {1, 1, 1, 3}.
Reducing A3 to A3 / 2 modifies arr[] to {1, 1, 1, 1}.
Therefore, all array elements are equal, Hence, the minimum operations required is 2.
Input: arr[] = {2, 2, 2}
Output: 0
Approach: The idea to solve this problem is to use Greedy Approach. Below are the steps:
- Initialize an auxiliary Map, say mp.
- Traverse the array and for each array element, divide the element by 2 until it reduces to 1, and store the resulting number in the Map.
- Traverse the map and find the maximum element having a frequency equal to N, say mx.
- Again, traverse the array and for each element, divide the element by 2 until it becomes equal to mx and increment count.
- Print count as the minimum number of required operations.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find minimum number of operations
int minOperations(int arr[], int N)
{
// Initialize map
map<int, int> mp;
// Traverse the array
for (int i = 0; i < N; i++) {
int res = arr[i];
// Divide current array
// element until it reduces to 1
while (res) {
mp[res]++;
res /= 2;
}
}
int mx = 1;
// Traverse the map
for (auto it : mp) {
// Find the maximum element
// having frequency equal to N
if (it.second == N) {
mx = it.first;
}
}
// Stores the minimum number
// of operations required
int ans = 0;
for (int i = 0; i < N; i++) {
int res = arr[i];
// Count operations required to
// convert current element to mx
while (res != mx) {
ans++;
res /= 2;
}
}
// Print the answer
cout << ans;
}
// Driver Code
int main()
{
// Given array
int arr[] = { 3, 1, 1, 3 };
// Size of the array
int N = sizeof(arr) / sizeof(arr[0]);
minOperations(arr, N);
}
Java
// Java program to implement
// the above approach
import java.io.*;
import java.util.*;
class GFG{
// Function to find minimum number of operations
static void minOperations(int[] arr, int N)
{
// Initialize map
HashMap<Integer,
Integer> mp = new HashMap<Integer,
Integer>();
// Traverse the array
for (int i = 0; i < N; i++) {
int res = arr[i];
// Divide current array
// element until it reduces to 1
if (mp.containsKey(res))
mp.put(res, mp.get(res) + 1);
else
mp.put(res, 1);
res /= 2;
}
int mx = 1;
for(Map.Entry<Integer, Integer> it : mp.entrySet())
{
// Find the maximum element
// having frequency equal to N
if (it.getValue() == N)
{
mx = it.getKey();
}
}
// Stores the minimum number
// of operations required
int ans = 0;
for (int i = 0; i < N; i++)
{
int res = arr[i];
// Count operations required to
// convert current element to mx
while (res != mx)
{
ans++;
res /= 2;
}
}
// Print the answer
System.out.println(ans);
}
// Driver Code
public static void main(String[] args)
{
// Given array
int arr[] = { 3, 1, 1, 3 };
// Size of the array
int N = arr.length;
minOperations(arr, N);
}
}
// This code is contributed by code_hunt.
Python3
# Python program for the above approach
# Function to find minimum number of operations
def minOperations(arr, N):
# Initialize map
mp = {}
# Traverse the array
for i in range(N):
res = arr[i]
# Divide current array
# element until it reduces to 1
while (res):
if res in mp:
mp[res] += 1
else:
mp[res] = 1
res //= 2
mx = 1
# Traverse the map
for it in mp:
# Find the maximum element
# having frequency equal to N
if (mp[it] == N):
mx = it
# Stores the minimum number
# of operations required
ans = 0
for i in range(N):
res = arr[i]
# Count operations required to
# convert current element to mx
while (res != mx):
ans += 1
res //= 2
# Print the answer
print(ans)
# Driver Code
# Given array
arr = [ 3, 1, 1, 3 ]
# Size of the array
N = len(arr)
minOperations(arr, N)
# This code is contributed by rohitsingh07052.
C#
// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG {
// Function to find minimum number of operations
static void minOperations(int[] arr, int N)
{
// Initialize map
Dictionary<int, int> mp = new Dictionary<int, int>();
// Traverse the array
for (int i = 0; i < N; i++) {
int res = arr[i];
// Divide current array
// element until it reduces to 1
while (res > 0) {
if(mp.ContainsKey(res))
{
mp[res]++;
}
else{
mp[res] = 1;
}
res /= 2;
}
}
int mx = 1;
foreach(KeyValuePair<int, int> it in mp)
{
// Find the maximum element
// having frequency equal to N
if (it.Value == N)
{
mx = it.Key;
}
}
// Stores the minimum number
// of operations required
int ans = 0;
for (int i = 0; i < N; i++)
{
int res = arr[i];
// Count operations required to
// convert current element to mx
while (res != mx)
{
ans++;
res /= 2;
}
}
// Print the answer
Console.Write(ans);
}
// Driver code
static void Main()
{
// Given array
int[] arr = { 3, 1, 1, 3 };
// Size of the array
int N = arr.Length;
minOperations(arr, N);
}
}
// This code is contributed by divyesh072019.
JavaScript
<script>
// Javascript program for the above approach
// Function to find minimum number of operations
function minOperations(arr, N)
{
// Initialize map
var mp = new Map();
// Traverse the array
for (var i = 0; i < N; i++) {
var res = arr[i];
// Divide current array
// element until it reduces to 1
while (res) {
if(mp.has(res))
{
mp.set(res, mp.get(res)+1);
}
else
{
mp.set(res, 1);
}
res = parseInt(res/2);
}
}
var mx = 1;
// Traverse the map
mp.forEach((value, key) => {
// Find the maximum element
// having frequency equal to N
if (value == N) {
mx = key;
}
});
// Stores the minimum number
// of operations required
var ans = 0;
for (var i = 0; i < N; i++) {
var res = arr[i];
// Count operations required to
// convert current element to mx
while (res != mx) {
ans++;
res = parseInt(res/2);
}
}
// Print the answer
document.write( ans);
}
// Driver Code
// Given array
var arr = [3, 1, 1, 3];
// Size of the array
var N = arr.length;
minOperations(arr, N);
</script>
Time Complexity: O(N * log(max(arr[i]))
Auxiliary Space: O(N)
Similar Reads
Minimum number of bits of array elements required to be flipped to make all array elements equal Given an array arr[] consisting of N positive integers, the task is to find the minimum number of bits of array elements required to be flipped to make all array elements equal. Examples: Input: arr[] = {3, 5}Output: 2Explanation:Following are the flipping of bits of the array elements required: For
7 min read
Minimum sum of values subtracted from array elements to make all array elements equal Given an array arr[] consisting of N positive integers, the task is to find the sum of all the array elements required to be subtracted from each array element such that remaining array elements are all equal. Examples: Input: arr[] = {1, 2}Output: 1Explanation: Subtracting 1 from arr[1] modifies ar
4 min read
Make all array elements equal to 0 by replacing minimum subsequences consisting of equal elements Given an array arr[] of size N, the task is to make all array elements equal to 0 by replacing all elements of a subsequences of equal elements by any integer, minimum number of times. Examples: Input: arr[] = {3, 7, 3}, N = 3Output: 2Explanation:Selecting a subsequence { 7 } and replacing all its e
5 min read
Maximum number of times Array can be reduced in half when its all elements are even Given an array arr, the task is to perform operations on the array when all elements in the array are even. In one operation, replace each integer X in the array by X/2. Find maximum possible number of operations that you can perform. Examples: Input: arr[] = {8, 12, 40}Output: 2Explanation: Initial
6 min read
Find the minimum number of operations required to make all array elements equal Given an array arr[] of size N. The task is to make all the array elements equal by applying the below operations minimum number of times: Choose a pair of indices (i, j) such that |i - j| = 1 (indices i and j are adjacent) and set arr[i] = arr[i] + |arr[i] - arr[j]|Choose a pair of indices (i, j) s
6 min read