Open In App

Make all array elements divisible by a number K

Last Updated : 23 Dec, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array arr[] and a number K, the task is to make all elements of array divisible by K. To make elements divisible by K, one can perform following operation: 
 

  • Choose any index C in the array.
  • You are allowed to subtract any value from any of the numbers up to the index C and you are allowed to add any value to any of the elements present after index C.
  • The only condition required for the above operation is total sum of values subtracted up to index C can be added to the elements after index C.


Print the value of index C and the difference of subtracted numbers to the numbers added after index C.
Examples:
 

Input: arr[] = {1, 14, 4, 41, 1}, K = 7 
Output: C = 3, difference = 5 
Explanation: 
Please Refer below for explanation.
Input: arr[] = {1, 10, 19}, K=9 
Output: C = 2, difference = 2 
 


Explanation: 
 


 


Approach: 
 

  • Create two auxiliary arrays arr1[] and arr2[].
  • The first array arr1[] stores the value of element that can be subtracted from every element to make it divisible by K in arr[].
  • The second array arr2[] stores the value of element that can be added to make the element divisible by K.
  • Then Iterate over the possible values for the C and find the index in which the sum of subtracted values from arr1[] up to that index is greater than or equal to the sum of the added values to the index after C in arr2[].


Below is the implementation of the above approach: 
 

C++
// C++ implementation to make
// the array elements divisible by K
#include <bits/stdc++.h>
using namespace std;

// Function to make array divisible
pair<int,int> makeDivisble(int arr[], int n, int k)
{
    
    vector<int>b1; 
    vector<int>b2;
    int c, suml, sumr, index, rem;
    
    // For each element of array
    // how much number to be subtracted
    // to make it divisible by k 
    for (int i = 0; i < n; i++)
        b1.push_back(arr[i] % k);
    
    // For each element of array
    // how much number to be added
    // to make it divisible by K 
    for (int j = 0; j < n; j++)
        if ((arr[j] % k) != 0)
            b2.push_back(k - (arr[j] % k));
        else
            b2.push_back(0);
            
    c = 0;
    float mini = INT_MAX;
    suml = 0;
    sumr = 0;
    index = -1;
    
    // Calculate minimum difference 
    for (int c = 0; c < n; c++)
    {
        suml = accumulate(b1.begin(),b1.begin() + c + 1, 0);
        sumr = accumulate(b2.begin() + c + 1 , b2.end(), 0);
        if (suml >= sumr)
        {
            rem = suml - sumr;
            if (rem < mini)
            {
                mini = rem;
                index = c;
            }
        }
    }
    
    return make_pair(index, mini);

}

// Driver Code
int main() {
    int arr[] = {1, 14, 4, 41, 1};
    int k = 7;
    int n=sizeof(arr)/sizeof(arr[0]);
    
    pair<int ,int>ans;
    ans = makeDivisble(arr, n, k);
    cout << ans.first << " " << ans.second;
    
    return 0;
}

// This code is contributed by Atul_kumar_Shrivastava
Java
/*package whatever //do not write package name here */

import java.util.*;

class GFG {

  static class Pair{

    int first;
    int second;

    Pair(int f,int s){
      first = f;
      second = s;
    }

  }


  // Function to make array divisible
  static Pair makeDivisble(int arr[], int n, int k)
  {

    ArrayList<Integer> b1  = new ArrayList<>(); 
    ArrayList<Integer> b2  = new ArrayList<>(); 
    int c, suml, sumr, index, rem;

    // For each element of array
    // how much number to be subtracted
    // to make it divisible by k 
    for (int i = 0; i < n; i++)
      b1.add(arr[i] % k);

    // For each element of array
    // how much number to be added
    // to make it divisible by K 
    for (int j = 0; j < n; j++)
      if ((arr[j] % k) != 0)
        b2.add(k - (arr[j] % k));
    else
      b2.add(0);

    c = 0;
    double mini = Integer.MAX_VALUE;
    suml = 0;
    sumr = 0;
    index = -1;

    // Calculate minimum difference 
    for (c = 0; c < n; c++)
    {
      suml = accumulate(b1,0,c + 1);
      sumr = accumulate(b2,c + 1 ,b2.size());
      if (suml >= sumr)
      {
        rem = suml - sumr;
        if (rem < mini)
        {
          mini = rem;
          index = c;
        }
      }
    }

    return new Pair(index, (int)mini);

  }

  static int accumulate(ArrayList<Integer> ll,int i,int j){

    int sum = 0;

    while(i<j){
      sum += ll.get(i);
      i++;
    }

    return sum;
  }

  public static void main (String[] args) {
    int arr[] = {1, 14, 4, 41, 1};
    int k = 7;
    int n= arr.length;

    Pair ans = makeDivisble(arr, n, k);
    System.out.println(ans.first + " " + ans.second);
  }
}

// This code is contributed by aadityaburujwale.
Python3
# Python implementation to make
# the array elements divisible by K

# Function to make array divisible
def makeDivisble(arr, k):
    n = len(arr)
    b1 =[]
    b2 =[]
    
    # For each element of array
    # how much number to be subtracted
    # to make it divisible by k 
    for i in range (n):
        b1.append(arr[i]% k)
    
    # For each element of array
    # how much number to be added
    # to make it divisible by K 
    for j in range(n):
        if ((arr[j]% k)!= 0):
            b2.append(k-(arr[j]% k))
        else:
            b2.append(0) 
    c = 0
    mini = float('inf')
    suml = 0
    sumr = 0
    index = -1
    
    # Calculate minimum difference 
    for c in range(0, n+1, 1):
        suml = sum(b1[ : c + 1])
        sumr = sum(b2[c+1 : ])
        if suml>= sumr:
            rem = suml-sumr
            if rem<mini:
                mini = rem
                index = c
    return index, mini

# Driver Code
if __name__ == "__main__":
    arr = [1, 14, 4, 41, 1]
    k = 7
    index, diff = makeDivisble(arr, k)
    print(index, diff)
C#
using System;
using System.Collections.Generic;

public class GFG {

  public static int accumulate(List<int> ll, int i, int j)
  {

    int sum = 0;

    while (i < j) {
      sum += ll[i];
      i++;
    }

    return sum;
  }

  // Function to make array divisible
  public static List<int> makeDivisble(int[] arr, int n,
                                       int k)
  {
    List<int> b1 = new List<int>();
    List<int> b2 = new List<int>();
    int c, suml, sumr, index, rem;

    // For each element of array
    // how much number to be subtracted
    // to make it divisible by k
    for (int i = 0; i < n; i++)
      b1.Add(arr[i] % k);

    // For each element of array
    // how much number to be added
    // to make it divisible by K
    for (int j = 0; j < n; j++)
      if ((arr[j] % k) != 0)
        b2.Add(k - (arr[j] % k));
    else
      b2.Add(0);

    c = 0;
    int mini = Int32.MaxValue;
    suml = 0;
    sumr = 0;
    index = -1;

    // Calculate minimum difference
    for (c = 0; c < n; c++) {
      suml = accumulate(b1, 0, c + 1);
      sumr = accumulate(b2, c + 1, b2.Count);
      if (suml >= sumr) {
        rem = suml - sumr;
        if (rem < mini) {
          mini = rem;
          index = c;
        }
      }
    }
    List<int> ans = new List<int>();
    ans.Add(index);
    ans.Add(mini);
    return ans;
  }

  static public void Main()
  {

    int[] arr = { 1, 14, 4, 41, 1 };
    int k = 7;
    int n = arr.Length;

    List<int> ans = new List<int>();
    ans = makeDivisble(arr, n, k);
    Console.WriteLine(ans[0] + " " + ans[1]);
  }
}

// This code is contributed by akashish__
JavaScript
// JS implementation to make
// the array elements divisible by K

function accumulate(ll, i, j){

    let sum = 0;

    while(i<j){
      sum += ll[i];
      i++;
    }

    return sum;
  }

// Function to make array divisible
function makeDivisble(arr, n, k)
{
    // vector<int>b1; 
    // vector<int>b2;
    let b1 = [], b2 = [];
    let c, suml, sumr, index, rem;
    
    // For each element of array
    // how much number to be subtracted
    // to make it divisible by k 
    for (let i = 0; i < n; i++)
        b1.push(arr[i] % k);
    
    // For each element of array
    // how much number to be added
    // to make it divisible by K 
    for (let j = 0; j < n; j++)
        if ((arr[j] % k) != 0)
            b2.push(k - (arr[j] % k));
        else
            b2.push(0);
            
    c = 0;
    let mini = Number.MAX_VALUE;
    suml = 0;
    sumr = 0;
    index = -1;
    
    // Calculate minimum difference 
    for (let c = 0; c < n; c++)
    {
        suml = accumulate(b1,0,c + 1);
        sumr = accumulate(b2,c + 1 ,b2.length);
        if (suml >= sumr)
        {
            rem = suml - sumr;
            if (rem < mini)
            {
                mini = rem;
                index = c;
            }
        }
    }
    
    return {"first":index, "second":mini};

}

// Driver Code
let arr = [1, 14, 4, 41, 1];
let k = 7;
let n=arr.length;

let ans = [];
ans = makeDivisble(arr, n, k);
console.log(ans.first,ans.second);

// This code is contributed by akashish__

Output: 
3 5

 

Time Complexity: O(N^2)
Auxiliary Space: O(N) 


Article Tags :

Similar Reads