img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\
gx = cv2.Sobel(np.float32(img), cv2.CV_64F, 1, 0, 3)
gy = cv2.Sobel(np.float32(img), cv2.CV_64F, 0, 1, 3)
mag, ang = cv2.cartToPolar(gx, gy, angleInDegrees=True)
mag_max = np.max(mag)
if weak_th is None:
weak_th = mag_max * 0.1
if strong_th is None: strong_th = mag_max * 0.5
for i_x in range(width):
for i_y in range(height):
grad_ang = ang[i_y, i_x]
grad_ang = abs(
grad_ang - 180) if abs(grad_ang) > 180 else abs(grad_ang)
if grad_ang <= 22.5:
neighb_1_x, neighb_1_y = i_x - 1, i_y
neighb_2_x, neighb_2_y = i_x + 1, i_y
elif grad_ang > 22.5 and grad_ang <= 67.5:
neighb_1_x, neighb_1_y = i_x - 1, i_y - 1
neighb_2_x, neighb_2_y = i_x + 1, i_y + 1
elif grad_ang > 67.5 and grad_ang <= 112.5:
neighb_1_x, neighb_1_y = i_x, i_y - 1
neighb_2_x, neighb_2_y = i_x, i_y + 1
elif grad_ang > 112.5 and grad_ang <= 157.5:
neighb_1_x, neighb_1_y = i_x - 1, i_y + 1
neighb_2_x, neighb_2_y = i_x + 1, i_y - 1
else:
neighb_1_x, neighb_1_y = i_x - 1, i_y
neighb_2_x, neighb_2_y = i_x + 1, i_y
if 0 <= neighb_1_x < width and 0 <= neighb_1_y < height:
if mag[i_y, i_x] < mag[neighb_1_y, neighb_1_x]:
mag[i_y, i_x] = 0
continue
if 0 <= neighb_2_x < width and 0 <= neighb_2_y < height:
if mag[i_y, i_x] < mag[neighb_2_y, neighb_2_x]:
mag[i_y, i_x] =
ids = np.zeros_like(img)
for i_x in range(width):
for i_y in range(height):
grad_mag = mag[i_y, i_x]
if grad_mag < weak_th:
mag[i_y, i_x] = 0
elif strong_th > grad_mag >= weak_th:
ids[i_y, i_x] = 1
else:
ids[i_y, i_x] = 2
return mag