Longest subarray having sum K | Set 2
Last Updated :
15 Jul, 2025
Given an array arr[] of size N containing integers. The task is to find the length of the longest sub-array having sum equal to the given value K.
Examples:
Input: arr[] = {2, 3, 4, 2, 1, 1}, K = 10
Output: 4
Explanation:
The subarray {3, 4, 2, 1} gives summation as 10.
Input: arr[] = {6, 8, 14, 9, 4, 11, 10}, K = 13
Output: 2
Explanation:
The subarray {9, 4} gives summation as 13.
Naive Approach: Please refer to this article.
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: The idea is to use Binary Search to find the subarray of maximum length having sum K. Below are the steps:
- Create a prefix sum array(say pref[]) from the given array arr[].
- For each element in the prefix array pref[] do Binary Search:
- Initialize ans, start and end variables as -1, 0, and N respectively.
- Find the middle index(say mid).
- If pref[mid] - val ? K then update the start variable to mid + 1 and ans to mid.
- Else update the end variable to mid - 1.
- Return the value of ans from the above binary search.
- If current subarray length is less than (ans - i), then update the maximum length to (ans - i).
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// To store the prefix sum array
vector<int> v;
// Function for searching the
// lower bound of the subarray
int bin(int val, int k, int n)
{
int lo = 0;
int hi = n;
int mid;
int ans = -1;
// Iterate until low less
// than equal to high
while (lo <= hi) {
mid = lo + (hi - lo) / 2;
// For each mid finding sum
// of sub array less than
// or equal to k
if (v[mid] - val <= k) {
lo = mid + 1;
ans = mid;
}
else
hi = mid - 1;
}
// Return the final answer
return ans;
}
// Function to find the length of
// subarray with sum K
void findSubarraySumK(int arr[], int N, int K)
{
// Initialize sum to 0
int sum = 0;
v.push_back(0);
// Push the prefix sum of the
// array arr[] in prefix[]
for (int i = 0; i < N; i++) {
sum += arr[i];
v.push_back(sum);
}
int l = 0, ans = 0, r;
for (int i = 0; i < N; i++) {
// Search r for each i
r = bin(v[i], K, N);
// Update ans
ans = max(ans, r - i);
}
// Print the length of subarray
// found in the array
cout << ans;
}
// Driver Code
int main()
{
// Given array arr[]
int arr[] = { 6, 8, 14, 9, 4, 11, 10 };
int N = sizeof(arr) / sizeof(arr[0]);
// Given sum K
int K = 13;
// Function Call
findSubarraySumK(arr, N, K);
return 0;
}
Java
// Java program for the above approach
import java.util.*;
class GFG {
// To store the prefix sum array
static Vector<Integer> v = new Vector<Integer>();
// Function for searching the
// lower bound of the subarray
static int bin(int val, int k, int n)
{
int lo = 0;
int hi = n;
int mid;
int ans = -1;
// Iterate until low less
// than equal to high
while (lo <= hi) {
mid = lo + (hi - lo) / 2;
// For each mid finding sum
// of sub array less than
// or equal to k
if (v.get(mid) - val <= k) {
lo = mid + 1;
ans = mid;
}
else
hi = mid - 1;
}
// Return the final answer
return ans;
}
// Function to find the length of
// subarray with sum K
static void findSubarraySumK(int arr[], int N, int K)
{
// Initialize sum to 0
int sum = 0;
v.add(0);
// Push the prefix sum of the
// array arr[] in prefix[]
for (int i = 0; i < N; i++) {
sum += arr[i];
v.add(sum);
}
int l = 0, ans = 0, r;
for (int i = 0; i < v.size(); i++) {
// Search r for each i
r = bin(v.get(i), K, N);
// Update ans
ans = Math.max(ans, r - i);
}
// Print the length of subarray
// found in the array
System.out.print(ans);
}
// Driver Code
public static void main(String[] args)
{
// Given array arr[]
int arr[] = { 6, 8, 14, 9, 4, 11, 10 };
int N = arr.length;
// Given sum K
int K = 13;
// Function call
findSubarraySumK(arr, N, K);
}
}
// This code is contributed by gauravrajput1
Python3
# Python3 program for the above approach
# To store the prefix sum1 array
v = []
# Function for searching the
# lower bound of the subarray
def bin1(val, k, n):
global v
lo = 0
hi = n
mid = 0
ans = -1
# Iterate until low less
# than equal to high
while (lo <= hi):
mid = lo + ((hi - lo) // 2)
# For each mid finding sum1
# of sub array less than
# or equal to k
if (v[mid] - val <= k):
lo = mid + 1
ans = mid
else:
hi = mid - 1
# Return the final answer
return ans
# Function to find the length of
# subarray with sum1 K
def findSubarraysum1K(arr, N, K):
global v
# Initialize sum1 to 0
sum1 = 0
v.append(0)
# Push the prefix sum1 of the
# array arr[] in prefix[]
for i in range(N):
sum1 += arr[i]
v.append(sum1)
l = 0
ans = 0
r = 0
for i in range(len(v)):
# Search r for each i
r = bin1(v[i], K, N)
# Update ans
ans = max(ans, r - i)
# Print the length of subarray
# found in the array
print(ans)
# Driver Code
if __name__ == '__main__':
# Given array arr[]
arr = [6, 8, 14, 9, 4, 11, 10]
N = len(arr)
# Given sum1 K
K = 13
# Function Call
findSubarraysum1K(arr, N, K)
# This code is contributed by ipg2016107
C#
// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG {
// To store the prefix sum array
static List<int> v = new List<int>();
// Function for searching the
// lower bound of the subarray
static int bin(int val, int k, int n)
{
int lo = 0;
int hi = n;
int mid;
int ans = -1;
// Iterate until low less
// than equal to high
while (lo <= hi) {
mid = lo + (hi - lo) / 2;
// For each mid finding sum
// of sub array less than
// or equal to k
if (v[mid] - val <= k) {
lo = mid + 1;
ans = mid;
}
else
hi = mid - 1;
}
// Return the final answer
return ans;
}
// Function to find the length of
// subarray with sum K
static void findSubarraySumK(int[] arr, int N, int K)
{
// Initialize sum to 0
int sum = 0;
v.Add(0);
// Push the prefix sum of the
// array []arr in prefix[]
for (int i = 0; i < N; i++) {
sum += arr[i];
v.Add(sum);
}
int ans = 0, r;
for (int i = 0; i < v.Count; i++) {
// Search r for each i
r = bin(v[i], K, N);
// Update ans
ans = Math.Max(ans, r - i);
}
// Print the length of subarray
// found in the array
Console.Write(ans);
}
// Driver Code
public static void Main(String[] args)
{
// Given array []arr
int[] arr = { 6, 8, 14, 9, 4, 11, 10 };
int N = arr.Length;
// Given sum K
int K = 13;
// Function call
findSubarraySumK(arr, N, K);
}
}
// This code is contributed by gauravrajput1
JavaScript
<script>
// Javascript program for the above approach
// To store the prefix sum array
let v = [];
// Function for searching the
// lower bound of the subarray
function bin(val, k, n)
{
let lo = 0;
let hi = n;
let mid;
let ans = -1;
// Iterate until low less
// than equal to high
while (lo <= hi) {
mid = lo + parseInt((hi - lo) / 2);
// For each mid finding sum
// of sub array less than
// or equal to k
if (v[mid] - val <= k) {
lo = mid + 1;
ans = mid;
}
else
hi = mid - 1;
}
// Return the final answer
return ans;
}
// Function to find the length of
// subarray with sum K
function findSubarraySumK(arr, N, K)
{
// Initialize sum to 0
let sum = 0;
v.push(0);
// Push the prefix sum of the
// array arr[] in prefix[]
for (let i = 0; i < N; i++) {
sum += arr[i];
v.push(sum);
}
let l = 0, ans = 0, r;
for (let i = 0; i < N; i++) {
// Search r for each i
r = bin(v[i], K, N);
// Update ans
ans = Math.max(ans, r - i);
}
// Print the length of subarray
// found in the array
document.write(ans);
}
// Driver Code
// Given array arr[]
let arr = [ 6, 8, 14, 9, 4, 11, 10 ];
let N = arr.length;
// Given sum K
let K = 13;
// Function Call
findSubarraySumK(arr, N, K);
</script>
Time Complexity: O(N*log2N)
Auxiliary Space: O(N)
Efficient approach: For a O(N) approach, please refer to the efficient approach of this article.
Hashmap approach in python:
Approach:
- Initialize a hashmap prefix_sum with initial key-value pair of 0: -1. The keys in this hashmap represent the prefix sum of the elements in the array till a certain index, and the values represent the index at which that prefix sum was first seen.
- Initialize curr_sum and max_len to 0.
- Traverse through the array using a loop and at each iteration, update the curr_sum by adding the current element.
- Check if curr_sum - K is present in the prefix_sum hashmap. If it is, then update max_len to be the maximum of its current value and i - prefix_sum[curr_sum - K], where i is the current index.
- Check if curr_sum is not already present in the prefix_sum hashmap. If it is not, then add a new key-value pair to the hashmap with curr_sum as the key and i as the value.
- Return max_len.
C++
#include <iostream>
#include <unordered_map>
#include <vector>
int LongestSubarraySum(const std::vector<int>& arr, int K) {
int n = arr.size();
std::unordered_map<int, int> prefixSum;
int currSum = 0;
int maxLen = 0;
for (int i = 0; i < n; i++) {
currSum += arr[i];
// If (currSum - K) is in the prefixSum, update maxLen
if (prefixSum.find(currSum - K) != prefixSum.end()) {
maxLen = std::max(maxLen, i - prefixSum[currSum - K]);
}
// If currSum is not in prefixSum, add it with the current index
if (prefixSum.find(currSum) == prefixSum.end()) {
prefixSum[currSum] = i;
}
}
return maxLen;
}
int main() {
// Example usage
std::vector<int> arr1 = {2, 3, 4, 2, 1, 1};
int K1 = 10;
std::cout << "Longest subarray length with sum " << K1 << " in [";
for (int i = 0; i < arr1.size(); i++) {
std::cout << arr1[i];
if (i < arr1.size() - 1) {
std::cout << ", ";
}
}
std::cout << "] is: " << LongestSubarraySum(arr1, K1) << std::endl; // Output: 4
std::vector<int> arr2 = {6, 8, 14, 9, 4, 11, 10};
int K2 = 13;
std::cout << "Longest subarray length with sum " << K2 << " in [";
for (int i = 0; i < arr2.size(); i++) {
std::cout << arr2[i];
if (i < arr2.size() - 1) {
std::cout << ", ";
}
}
std::cout << "] is: " << LongestSubarraySum(arr2, K2) << std::endl; // Output: 2
return 0;
}
Java
import java.util.HashMap;
import java.util.Map;
public class Main {
public static int LongestSubarraySum(int[] arr, int K) {
int n = arr.length;
Map<Integer, Integer> prefixSum = new HashMap<>();
int currSum = 0;
int maxLen = 0;
for (int i = 0; i < n; i++) {
currSum += arr[i];
// If (currSum - K) is in prefixSum, update maxLen
if (prefixSum.containsKey(currSum - K)) {
maxLen = Math.max(maxLen, i - prefixSum.get(currSum - K));
}
// If currSum is not in prefixSum, add it with the current index
if (!prefixSum.containsKey(currSum)) {
prefixSum.put(currSum, i);
}
}
return maxLen;
}
public static void main(String[] args) {
// Example usage
int[] arr1 = {2, 3, 4, 2, 1, 1};
int K1 = 10;
System.out.print("Longest subarray length with sum " + K1 + " in [");
for (int i = 0; i < arr1.length; i++) {
System.out.print(arr1[i]);
if (i < arr1.length - 1) {
System.out.print(", ");
}
}
System.out.println("] is: " + LongestSubarraySum(arr1, K1)); // Output: 4
int[] arr2 = {6, 8, 14, 9, 4, 11, 10};
int K2 = 13;
System.out.print("Longest subarray length with sum " + K2 + " in [");
for (int i = 0; i < arr2.length; i++) {
System.out.print(arr2[i]);
if (i < arr2.length - 1) {
System.out.print(", ");
}
}
System.out.println("] is: " + LongestSubarraySum(arr2, K2)); // Output: 2
}
}
Python3
def longest_subarray_sum(arr, K):
n = len(arr)
prefix_sum = {0: -1}
curr_sum = 0
max_len = 0
for i in range(n):
curr_sum += arr[i]
if curr_sum - K in prefix_sum:
max_len = max(max_len, i - prefix_sum[curr_sum - K])
if curr_sum not in prefix_sum:
prefix_sum[curr_sum] = i
return max_len
# example usage
arr1 = [2, 3, 4, 2, 1, 1]
K1 = 10
print("Longest subarray length with sum", K1, "in", arr1, "is:", longest_subarray_sum(arr1, K1)) # output: 4
arr2 = [6, 8, 14, 9, 4, 11, 10]
K2 = 13
print("Longest subarray length with sum", K2, "in", arr2, "is:", longest_subarray_sum(arr2, K2)) # output: 2
C#
using System;
using System.Collections.Generic;
using System.Linq;
class Program
{
static int LongestSubarraySum(List<int> arr, int K)
{
int n = arr.Count;
Dictionary<int, int> prefixSum = new Dictionary<int, int>();
int currSum = 0;
int maxLen = 0;
for (int i = 0; i < n; i++)
{
currSum += arr[i];
// If (currSum - K) is in prefixSum, update maxLen
if (prefixSum.ContainsKey(currSum - K))
{
maxLen = Math.Max(maxLen, i - prefixSum[currSum - K]);
}
// If currSum is not in prefixSum, add it with the current index
if (!prefixSum.ContainsKey(currSum))
{
prefixSum[currSum] = i;
}
}
return maxLen;
}
static void Main()
{
// Example usage
List<int> arr1 = new List<int> { 2, 3, 4, 2, 1, 1 };
int K1 = 10;
Console.Write("Longest subarray length with sum " + K1 + " in [");
for (int i = 0; i < arr1.Count; i++)
{
Console.Write(arr1[i]);
if (i < arr1.Count - 1)
{
Console.Write(", ");
}
}
Console.WriteLine("] is: " + LongestSubarraySum(arr1, K1)); // Output: 4
List<int> arr2 = new List<int> { 6, 8, 14, 9, 4, 11, 10 };
int K2 = 13;
Console.Write("Longest subarray length with sum " + K2 + " in [");
for (int i = 0; i < arr2.Count; i++)
{
Console.Write(arr2[i]);
if (i < arr2.Count - 1)
{
Console.Write(", ");
}
}
Console.WriteLine("] is: " + LongestSubarraySum(arr2, K2)); // Output: 2
}
}
JavaScript
// Javascript Code
function LongestSubarraySum(arr, K) {
let n = arr.length;
let prefixSum = new Map();
let currSum = 0;
let maxLen = 0;
for (let i = 0; i < n; i++) {
currSum += arr[i];
// If (currSum - K) is in prefixSum, update maxLen
if (prefixSum.has(currSum - K)) {
maxLen = Math.max(maxLen, i - prefixSum.get(currSum - K));
}
// If currSum is not in prefixSum, add it with the current index
if (!prefixSum.has(currSum)) {
prefixSum.set(currSum, i);
}
}
return maxLen;
}
// Example usage
let arr1 = [2, 3, 4, 2, 1, 1];
let K1 = 10;
console.log(`Longest subarray length with sum ${K1} in [${arr1}] is: ${LongestSubarraySum(arr1, K1)}`); // Output: 4
let arr2 = [6, 8, 14, 9, 4, 11, 10];
let K2 = 13;
console.log(`Longest subarray length with sum ${K2} in [${arr2}] is: ${LongestSubarraySum(arr2, K2)}`); // Output: 2
OutputLongest subarray length with sum 10 in [2, 3, 4, 2, 1, 1] is: 4
Longest subarray length with sum 13 in [6, 8, 14, 9, 4, 11, 10] is: 2
The time complexity of this approach is O(n) as we are traversing through the array only once,
the space complexity is O(n) as we are using a hashmap to store prefix sums.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem