Longest subarray having maximum sum
Last Updated :
11 Jul, 2025
Given an array arr[] containing n integers. The problem is to find the length of the subarray having maximum sum. If there exists two or more subarrays with maximum sum then print the length of the longest subarray.
Examples:
Input : arr[] = {5, -2, -1, 3, -4}
Output : 4
There are two subarrays with maximum sum:
First is {5}
Second is {5, -2, -1, 3}
Therefore longest one is of length 4.
Input : arr[] = {-2, -3, 4, -1, -2, 1, 5, -3}
Output : 5
The subarray is {4, -1, -2, 1, 5}
Approach: Following are the steps
- Find the maximum sum contiguous subarray. Let this sum be maxSum.
- Find the length of the longest subarray having sum equal to maxSum. Refer this post.
C++
// C++ implementation to find the length of the longest
// subarray having maximum sum
#include <bits/stdc++.h>
using namespace std;
// function to find the maximum sum that
// exists in a subarray
int maxSubArraySum(int arr[], int size)
{
int max_so_far = arr[0];
int curr_max = arr[0];
for (int i = 1; i < size; i++) {
curr_max = max(arr[i], curr_max + arr[i]);
max_so_far = max(max_so_far, curr_max);
}
return max_so_far;
}
// function to find the length of longest
// subarray having sum k
int lenOfLongSubarrWithGivenSum(int arr[], int n, int k)
{
// unordered_map 'um' implemented
// as hash table
unordered_map<int, int> um;
int sum = 0, maxLen = 0;
// traverse the given array
for (int i = 0; i < n; i++) {
// accumulate sum
sum += arr[i];
// when subarray starts from index '0'
if (sum == k)
maxLen = i + 1;
// make an entry for 'sum' if it is
// not present in 'um'
if (um.find(sum) == um.end())
um[sum] = i;
// check if 'sum-k' is present in 'um'
// or not
if (um.find(sum - k) != um.end()) {
// update maxLength
if (maxLen < (i - um[sum - k]))
maxLen = i - um[sum - k];
}
}
// required maximum length
return maxLen;
}
// function to find the length of the longest
// subarray having maximum sum
int lenLongSubarrWithMaxSum(int arr[], int n)
{
int maxSum = maxSubArraySum(arr, n);
return lenOfLongSubarrWithGivenSum(arr, n, maxSum);
}
// Driver program to test above
int main()
{
int arr[] = { 5, -2, -1, 3, -4 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Length of longest subarray having maximum sum = "
<< lenLongSubarrWithMaxSum(arr, n);
return 0;
}
Java
// Java implementation to find
// the length of the longest
// subarray having maximum sum
import java.util.*;
class GFG
{
// function to find the
// maximum sum that
// exists in a subarray
static int maxSubArraySum(int arr[],
int size)
{
int max_so_far = arr[0];
int curr_max = arr[0];
for (int i = 1; i < size; i++)
{
curr_max = Math.max(arr[i],
curr_max + arr[i]);
max_so_far = Math.max(max_so_far,
curr_max);
}
return max_so_far;
}
// function to find the
// length of longest
// subarray having sum k
static int lenOfLongSubarrWithGivenSum(int arr[],
int n, int k)
{
// unordered_map 'um' implemented
// as hash table
HashMap<Integer,
Integer> um = new HashMap<Integer,
Integer>();
int sum = 0, maxLen = 0;
// traverse the given array
for (int i = 0; i < n; i++)
{
// accumulate sum
sum += arr[i];
// when subarray starts
// from index '0'
if (sum == k)
maxLen = i + 1;
// make an entry for 'sum' if
// it is not present in 'um'
if (um.containsKey(sum))
um.put(sum, i);
// check if 'sum-k' is present
// in 'um' or not
if (um.containsKey(sum - k))
{
// update maxLength
if (maxLen < (i - um.get(sum - k)))
maxLen = i - um.get(sum - k);
}
}
// required maximum length
return maxLen;
}
// function to find the length
// of the longest subarray
// having maximum sum
static int lenLongSubarrWithMaxSum(int arr[], int n)
{
int maxSum = maxSubArraySum(arr, n);
return lenOfLongSubarrWithGivenSum(arr, n, maxSum);
}
// Driver Code
public static void main(String args[])
{
int arr[] = { 5, -2, -1, 3, -4 };
int n = arr.length;
System.out.println("Length of longest subarray " +
"having maximum sum = " +
lenLongSubarrWithMaxSum(arr, n));
}
}
// This code is contributed by Arnab Kundu
Python
# Python3 implementation to find the length
# of the longest subarray having maximum sum
# function to find the maximum sum that
# exists in a subarray
def maxSubArraySum(arr, size):
max_so_far = arr[0]
curr_max = arr[0]
for i in range(1,size):
curr_max = max(arr[i], curr_max + arr[i])
max_so_far = max(max_so_far, curr_max)
return max_so_far
# function to find the length of longest
# subarray having sum k
def lenOfLongSubarrWithGivenSum(arr, n, k):
# unordered_map 'um' implemented
# as hash table
um = dict()
Sum, maxLen = 0, 0
# traverse the given array
for i in range(n):
# accumulate Sum
Sum += arr[i]
# when subarray starts from index '0'
if (Sum == k):
maxLen = i + 1
# make an entry for 'Sum' if it is
# not present in 'um'
if (Sum not in um.keys()):
um[Sum] = i
# check if 'Sum-k' is present in 'um'
# or not
if (Sum in um.keys()):
# update maxLength
if ((Sum - k) in um.keys() and
maxLen < (i - um[Sum - k])):
maxLen = i - um[Sum - k]
# required maximum length
return maxLen
# function to find the length of the longest
# subarray having maximum Sum
def lenLongSubarrWithMaxSum(arr, n):
maxSum = maxSubArraySum(arr, n)
return lenOfLongSubarrWithGivenSum(arr, n, maxSum)
# Driver Code
arr = [5, -2, -1, 3, -4]
n = len(arr)
print("Length of longest subarray having maximum sum = ",
lenLongSubarrWithMaxSum(arr, n))
# This code is contributed by mohit kumar
C#
// C# implementation to find
// the length of the longest
// subarray having maximum sum
using System;
using System.Collections.Generic;
public class GFG{
// function to find the
// maximum sum that
// exists in a subarray
static int maxSubArraySum(int []arr,
int size)
{
int max_so_far = arr[0];
int curr_max = arr[0];
for (int i = 1; i < size; i++)
{
curr_max = Math.Max(arr[i],
curr_max + arr[i]);
max_so_far = Math.Max(max_so_far,
curr_max);
}
return max_so_far;
}
// function to find the
// length of longest
// subarray having sum k
static int lenOfLongSubarrWithGivenSum(int []arr,
int n, int k)
{
// unordered_map 'um' implemented
// as hash table
Dictionary<int,
int> um = new Dictionary<int,
int>();
int sum = 0, maxLen = 0;
// traverse the given array
for (int i = 0; i < n; i++)
{
// accumulate sum
sum += arr[i];
// when subarray starts
// from index '0'
if (sum == k)
maxLen = i + 1;
// make an entry for 'sum' if
// it is not present in 'um'
if (um.ContainsKey(sum))
um.Add(sum, i);
// check if 'sum-k' is present
// in 'um' or not
if (um.ContainsKey(sum - k))
{
// update maxLength
if (maxLen < (i - um[sum - k]))
maxLen = i - um[sum - k];
}
}
// required maximum length
return maxLen;
}
// function to find the length
// of the longest subarray
// having maximum sum
static int lenLongSubarrWithMaxSum(int []arr, int n)
{
int maxSum = maxSubArraySum(arr, n);
return lenOfLongSubarrWithGivenSum(arr, n, maxSum);
}
// Driver Code
public static void Main()
{
int []arr = { 5, -2, -1, 3, -4 };
int n = arr.Length;
Console.WriteLine("Length of longest subarray " +
"having maximum sum = " +
lenLongSubarrWithMaxSum(arr, n));
}
}
// This code is contributed by Rajput-Ji
JavaScript
<script>
// Javascript implementation to find the length of the longest
// subarray having maximum sum
// function to find the maximum sum that
// exists in a subarray
function maxSubArraySum(arr, size)
{
var max_so_far = arr[0];
var curr_max = arr[0];
for (var i = 1; i < size; i++) {
curr_max = Math.max(arr[i], curr_max + arr[i]);
max_so_far = Math.max(max_so_far, curr_max);
}
return max_so_far;
}
// function to find the length of longest
// subarray having sum k
function lenOfLongSubarrWithGivenSum( arr, n, k)
{
// unordered_map 'um' implemented
// as hash table
var um = new Map();
var sum = 0, maxLen = 0;
// traverse the given array
for (var i = 0; i < n; i++) {
// accumulate sum
sum += arr[i];
// when subarray starts from index '0'
if (sum == k)
maxLen = i + 1;
// make an entry for 'sum' if it is
// not present in 'um'
if (!um.has(sum))
um.set(sum, i);
// check if 'sum-k' is present in 'um'
// or not
if (um.has(sum - k)) {
// update maxLength
if (maxLen < (i - um.get(sum-k)))
maxLen = i - um.get(sum-k)
}
}
// required maximum length
return maxLen;
}
// function to find the length of the longest
// subarray having maximum sum
function lenLongSubarrWithMaxSum(arr, n)
{
var maxSum = maxSubArraySum(arr, n);
return lenOfLongSubarrWithGivenSum(arr, n, maxSum);
}
// Driver program to test above
var arr = [5, -2, -1, 3, -4];
var n = arr.length;
document.write( "Length of longest subarray having maximum sum = "
+ lenLongSubarrWithMaxSum(arr, n));
// This code is contributed by rrrtnx.
</script>
OutputLength of longest subarray having maximum sum = 4
Time Complexity: O(n).
Auxiliary Space: O(n).
Approach: Kadane's algorithm
Following are the steps:
- traverse the array.
- Keep track of the maximum sum subarray ending at each index.
- Then, we return the length of the subarray with the maximum sum among all the subarrays.
Below is the implementation:
C++
// C++ program to find the length of the subarray having maximum sum
#include <iostream>
#include <algorithm>
using namespace std;
int maxSubArrayLen(int arr[], int n) {
// Initializing the variables
int max_so_far = arr[0];
int max_ending_here = arr[0];
int max_len = 1;
int curr_len = 1;
// Traversing through the array to find the subarray
for (int i = 1; i < n; i++) {
if (max_ending_here < 0) {
max_ending_here = arr[i];
curr_len = 1;
} else {
max_ending_here += arr[i];
curr_len++;
}
if (max_ending_here > max_so_far) {
max_so_far = max_ending_here;
max_len = curr_len;
} else if (max_ending_here == max_so_far) {
max_len = max(max_len, curr_len);
}
}
return max_len;
}
// Driver code
int main() {
// Input array
int arr[] = {5, -2, -1, 3, -4};
int n = sizeof(arr) / sizeof(arr[0]);
int max_len = maxSubArrayLen(arr, n);
cout << "Length of the subarray with maximum sum = " << max_len << endl;
return 0;
}
Java
//Code in java for above approach
public class Main {
public static int maxSubArrayLen(int[] arr, int n) {
// Initializing the variables
int max_so_far = arr[0];
int max_ending_here = arr[0];
int max_len = 1;
int curr_len = 1;
// Traversing through the array to find the subarray
for (int i = 1; i < n; i++) {
if (max_ending_here < 0) {
max_ending_here = arr[i];
curr_len = 1;
} else {
max_ending_here += arr[i];
curr_len++;
}
if (max_ending_here > max_so_far) {
max_so_far = max_ending_here;
max_len = curr_len;
} else if (max_ending_here == max_so_far) {
max_len = Math.max(max_len, curr_len);
}
}
return max_len;
}
public static void main(String[] args) {
// Input array
int[] arr = {5, -2, -1, 3, -4};
int n = arr.length;
int max_len = maxSubArrayLen(arr, n);
System.out.println("Length of the subarray with maximum sum = " + max_len);
}
}
Python
def maxSubArrayLen(arr):
# Initializing the variables
max_so_far = arr[0]
max_ending_here = arr[0]
max_len = 1
curr_len = 1
# Traversing through the array to find the subarray
for i in range(1, len(arr)):
if max_ending_here < 0:
max_ending_here = arr[i]
curr_len = 1
else:
max_ending_here += arr[i]
curr_len += 1
if max_ending_here > max_so_far:
max_so_far = max_ending_here
max_len = curr_len
elif max_ending_here == max_so_far:
max_len = max(max_len, curr_len)
return max_len
# Driver code
if __name__ == '__main__':
# Input array
arr = [5, -2, -1, 3, -4]
max_len = maxSubArrayLen(arr)
print(f"Length of the subarray with maximum sum = {max_len}")
C#
using System;
public class GFG
{
public static int MaxSubArrayLen(int[] arr, int n)
{
// Initializing the variables
int maxSoFar = arr[0];
int maxEndingHere = arr[0];
int maxLen = 1;
int currLen = 1;
// Traversing through the array to find the subarray
for (int i = 1; i < n; i++)
{
if (maxEndingHere < 0)
{
maxEndingHere = arr[i];
currLen = 1;
}
else
{
maxEndingHere += arr[i];
currLen++;
}
if (maxEndingHere > maxSoFar)
{
maxSoFar = maxEndingHere;
maxLen = currLen;
}
else if (maxEndingHere == maxSoFar)
{
maxLen = Math.Max(maxLen, currLen);
}
}
return maxLen;
}
// Driver code
public static void Main(string[] args)
{
// Input array
int[] arr = { 5, -2, -1, 3, -4 };
int n = arr.Length;
int maxLen = MaxSubArrayLen(arr, n);
Console.WriteLine("Length of the subarray with maximum sum = " + maxLen);
}
}
JavaScript
function maxSubArrayLen(arr) {
// Initializing the variables
let max_so_far = arr[0];
let max_ending_here = arr[0];
let max_len = 1;
let curr_len = 1;
// Traversing through the array to find the subarray
for (let i = 1; i < arr.length; i++) {
if (max_ending_here < 0) {
max_ending_here = arr[i];
curr_len = 1;
} else {
max_ending_here += arr[i];
curr_len++;
}
if (max_ending_here > max_so_far) {
max_so_far = max_ending_here;
max_len = curr_len;
} else if (max_ending_here === max_so_far) {
max_len = Math.max(max_len, curr_len);
}
}
return max_len;
}
// Driver code
const arr = [5, -2, -1, 3, -4];
const max_len = maxSubArrayLen(arr);
console.log("Length of the subarray with maximum sum = " + max_len);
OutputLength of the subarray with maximum sum = 4
Time Complexity: O(n)
Auxiliary Space: O(1)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem