Description:- In this algorithm, we are given 9 regions on the screen. Out of which one region is of the window and the rest 8 regions are around it given by 4 digit binary. The division of the regions are based on (x_max, y_max) and (x_min, y_min).
The central part is the viewing region or window, all the lines which lie within this region are completely visible. A region code is always assigned to the endpoints of the given line.
To check whether the line is visible or not.
Region CodesFormula to check binary digits:- TBRL which can be defined as top, bottom, right, and left accordingly.
TBRL RuleAlgorithm
Steps
1) Assign the region codes to both endpoints.
2) Perform OR operation on both of these endpoints.
3) if OR = 0000,
then it is completely visible (inside the window).
else
Perform AND operation on both these endpoints.
i) if AND ? 0000,
then the line is invisible and not inside the window. Also, it can't be considered for clipping.
ii) else
AND = 0000, the line is partially inside the window and considered for clipping.
4) After confirming that the line is partially inside the window, then we find the intersection with the boundary of the window. By using the following formula:-
Slope:- m= (y2-y1)/(x2-x1)
a) If the line passes through top or the line intersects with the top boundary of the window.
x = x + (y_wmax - y)/m
y = y_wmax
b) If the line passes through the bottom or the line intersects with the bottom boundary of the window.
x = x + (y_wmin - y)/m
y = y_wmin
c) If the line passes through the left region or the line intersects with the left boundary of the window.
y = y+ (x_wmin - x)*m
x = x_wmin
d) If the line passes through the right region or the line intersects with the right boundary of the window.
y = y + (x_wmax -x)*m
x = x_wmax
5) Now, overwrite the endpoints with a new one and update it.
6) Repeat the 4th step till your line doesn't get completely clipped
Given a set of lines and a rectangular area of interest, the task is to remove lines that are outside the area of interest and clip the lines which are partially inside the area.
Input : Rectangular area of interest (Defined by
below four values which are coordinates of
bottom left and top right)
x_min = 4, y_min = 4, x_max = 10, y_max = 8
A set of lines (Defined by two corner coordinates)
line 1 : x1 = 5, y1 = 5, x2 = 7, y2 = 7
Line 2 : x1 = 7, y1 = 9, x2 = 11, y2 = 4
Line 2 : x1 = 1, y1 = 5, x2 = 4, y2 = 1
Output : Line 1 : Accepted from (5, 5) to (7, 7)
Line 2 : Accepted from (7.8, 8) to (10, 5.25)
Line 3 : Rejected
Cohen-Sutherland algorithm divides a two-dimensional space into 9 regions and then efficiently determines the lines and portions of lines that are inside the given rectangular area.
The algorithm can be outlines as follows:-
Nine regions are created, eight "outside" regions and one
"inside" region.
For a given line extreme point (x, y), we can quickly
find its region's four bit code. Four bit code can
be computed by comparing x and y with four values
(x_min, x_max, y_min and y_max).
If x is less than x_min then bit number 1 is set.
If x is greater than x_max then bit number 2 is set.
If y is less than y_min then bit number 3 is set.
If y is greater than y_max then bit number 4 is set

There are three possible cases for any given line.
- Completely inside the given rectangle : Bitwise OR of region of two end points of line is 0 (Both points are inside the rectangle)
- Completely outside the given rectangle : Both endpoints share at least one outside region which implies that the line does not cross the visible region. (bitwise AND of endpoints != 0).
- Partially inside the window : Both endpoints are in different regions. In this case, the algorithm finds one of the two points that is outside the rectangular region. The intersection of the line from outside point and rectangular window becomes new corner point and the algorithm repeats

Pseudo Code:
Step 1 : Assign a region code for two endpoints of given line.
Step 2 : If both endpoints have a region code 0000
then given line is completely inside.
Step 3 : Else, perform the logical AND operation for both region codes.
Step 3.1 : If the result is not 0000, then given line is completely
outside.
Step 3.2 : Else line is partially inside.
Step 3.2.1 : Choose an endpoint of the line
that is outside the given rectangle.
Step 3.2.2 : Find the intersection point of the
rectangular boundary (based on region code).
Step 3.2.3 : Replace endpoint with the intersection point
and update the region code.
Step 3.2.4 : Repeat step 2 until we find a clipped line either
trivially accepted or trivially rejected.
Step 4 : Repeat step 1 for other lines
Below is implementation of above steps.
C++
// C++ program to implement Cohen Sutherland algorithm
// for line clipping.
#include <iostream>
using namespace std;
// Defining region codes
const int INSIDE = 0; // 0000
const int LEFT = 1; // 0001
const int RIGHT = 2; // 0010
const int BOTTOM = 4; // 0100
const int TOP = 8; // 1000
// Defining x_max, y_max and x_min, y_min for
// clipping rectangle. Since diagonal points are
// enough to define a rectangle
const int x_max = 10;
const int y_max = 8;
const int x_min = 4;
const int y_min = 4;
// Function to compute region code for a point(x, y)
int computeCode(double x, double y)
{
// initialized as being inside
int code = INSIDE;
if (x < x_min) // to the left of rectangle
code |= LEFT;
else if (x > x_max) // to the right of rectangle
code |= RIGHT;
if (y < y_min) // below the rectangle
code |= BOTTOM;
else if (y > y_max) // above the rectangle
code |= TOP;
return code;
}
// Implementing Cohen-Sutherland algorithm
// Clipping a line from P1 = (x2, y2) to P2 = (x2, y2)
void cohenSutherlandClip(double x1, double y1,
double x2, double y2)
{
// Compute region codes for P1, P2
int code1 = computeCode(x1, y1);
int code2 = computeCode(x2, y2);
// Initialize line as outside the rectangular window
bool accept = false;
while (true) {
if ((code1 == 0) && (code2 == 0)) {
// If both endpoints lie within rectangle
accept = true;
break;
}
else if (code1 & code2) {
// If both endpoints are outside rectangle,
// in same region
break;
}
else {
// Some segment of line lies within the
// rectangle
int code_out;
double x, y;
// At least one endpoint is outside the
// rectangle, pick it.
if (code1 != 0)
code_out = code1;
else
code_out = code2;
// Find intersection point;
// using formulas y = y1 + slope * (x - x1),
// x = x1 + (1 / slope) * (y - y1)
if (code_out & TOP) {
// point is above the clip rectangle
x = x1 + (x2 - x1) * (y_max - y1) / (y2 - y1);
y = y_max;
}
else if (code_out & BOTTOM) {
// point is below the rectangle
x = x1 + (x2 - x1) * (y_min - y1) / (y2 - y1);
y = y_min;
}
else if (code_out & RIGHT) {
// point is to the right of rectangle
y = y1 + (y2 - y1) * (x_max - x1) / (x2 - x1);
x = x_max;
}
else if (code_out & LEFT) {
// point is to the left of rectangle
y = y1 + (y2 - y1) * (x_min - x1) / (x2 - x1);
x = x_min;
}
// Now intersection point x, y is found
// We replace point outside rectangle
// by intersection point
if (code_out == code1) {
x1 = x;
y1 = y;
code1 = computeCode(x1, y1);
}
else {
x2 = x;
y2 = y;
code2 = computeCode(x2, y2);
}
}
}
if (accept) {
cout << "Line accepted from " << x1 << ", "
<< y1 << " to " << x2 << ", " << y2 << endl;
// Here the user can add code to display the rectangle
// along with the accepted (portion of) lines
}
else
cout << "Line rejected" << endl;
}
// Driver code
int main()
{
// First Line segment
// P11 = (5, 5), P12 = (7, 7)
cohenSutherlandClip(5, 5, 7, 7);
// Second Line segment
// P21 = (7, 9), P22 = (11, 4)
cohenSutherlandClip(7, 9, 11, 4);
// Third Line segment
// P31 = (1, 5), P32 = (4, 1)
cohenSutherlandClip(1, 5, 4, 1);
return 0;
}
Java
// Java program to implement Cohen Sutherland algorithm
// for line clipping.
import java.io.*;
class GFG {
// Defining region codes
static final int INSIDE = 0; // 0000
static final int LEFT = 1; // 0001
static final int RIGHT = 2; // 0010
static final int BOTTOM = 4; // 0100
static final int TOP = 8; // 1000
// Defining x_max, y_max and x_min, y_min for
// clipping rectangle. Since diagonal points are
// enough to define a rectangle
static final int x_max = 10;
static final int y_max = 8;
static final int x_min = 4;
static final int y_min = 4;
// Function to compute region code for a point(x, y)
static int computeCode(double x, double y)
{
// initialized as being inside
int code = INSIDE;
if (x < x_min) // to the left of rectangle
code |= LEFT;
else if (x > x_max) // to the right of rectangle
code |= RIGHT;
if (y < y_min) // below the rectangle
code |= BOTTOM;
else if (y > y_max) // above the rectangle
code |= TOP;
return code;
}
// Implementing Cohen-Sutherland algorithm
// Clipping a line from P1 = (x2, y2) to P2 = (x2, y2)
static void cohenSutherlandClip(double x1, double y1,
double x2, double y2)
{
// Compute region codes for P1, P2
int code1 = computeCode(x1, y1);
int code2 = computeCode(x2, y2);
// Initialize line as outside the rectangular window
boolean accept = false;
while (true) {
if ((code1 == 0) && (code2 == 0)) {
// If both endpoints lie within rectangle
accept = true;
break;
}
else if ((code1 & code2) != 0) {
// If both endpoints are outside rectangle,
// in same region
break;
}
else {
// Some segment of line lies within the
// rectangle
int code_out;
double x = 0, y = 0;
// At least one endpoint is outside the
// rectangle, pick it.
if (code1 != 0)
code_out = code1;
else
code_out = code2;
// Find intersection point;
// using formulas y = y1 + slope * (x - x1),
// x = x1 + (1 / slope) * (y - y1)
if ((code_out & TOP) != 0) {
// point is above the clip rectangle
x = x1
+ (x2 - x1) * (y_max - y1)
/ (y2 - y1);
y = y_max;
}
else if ((code_out & BOTTOM) != 0) {
// point is below the rectangle
x = x1
+ (x2 - x1) * (y_min - y1)
/ (y2 - y1);
y = y_min;
}
else if ((code_out & RIGHT) != 0) {
// point is to the right of rectangle
y = y1
+ (y2 - y1) * (x_max - x1)
/ (x2 - x1);
x = x_max;
}
else if ((code_out & LEFT) != 0) {
// point is to the left of rectangle
y = y1
+ (y2 - y1) * (x_min - x1)
/ (x2 - x1);
x = x_min;
}
// Now intersection point x, y is found
// We replace point outside rectangle
// by intersection point
if (code_out == code1) {
x1 = x;
y1 = y;
code1 = computeCode(x1, y1);
}
else {
x2 = x;
y2 = y;
code2 = computeCode(x2, y2);
}
}
}
if (accept) {
System.out.println("Line accepted from " + x1
+ ", " + y1 + " to " + x2
+ ", " + y2);
// Here the user can add code to display the
// rectangle along with the accepted (portion
// of) lines
}
else
System.out.println("Line rejected");
}
public static void main(String[] args)
{
// First Line segment
// P11 = (5, 5), P12 = (7, 7)
cohenSutherlandClip(5, 5, 7, 7);
// Second Line segment
// P21 = (7, 9), P22 = (11, 4)
cohenSutherlandClip(7, 9, 11, 4);
// Third Line segment
// P31 = (1, 5), P32 = (4, 1)
cohenSutherlandClip(1, 5, 4, 1);
}
}
// This code is contributed by jain_mudit.
C#
using System;
public class GFG{
// C# program to implement Cohen Sutherland algorithm
// for line clipping.
// Defining region codes
public const int INSIDE = 0; // 0000
public const int LEFT = 1; // 0001
public const int RIGHT = 2; // 0010
public const int BOTTOM = 4; // 0100
public const int TOP = 8; // 1000
// Defining x_max, y_max and x_min, y_min for
// clipping rectangle. Since diagonal points are
// enough to define a rectangle
public const int x_max = 10;
public const int y_max = 8;
public const int x_min = 4;
public const int y_min = 4;
// Function to compute region code for a point(x, y)
public static int computeCode(double x, double y)
{
// initialized as being inside
int code = INSIDE;
if (x < x_min) // to the left of rectangle
code |= LEFT;
else if (x > x_max) // to the right of rectangle
code |= RIGHT;
if (y < y_min) // below the rectangle
code |= BOTTOM;
else if (y > y_max) // above the rectangle
code |= TOP;
return code;
}
// Implementing Cohen-Sutherland algorithm
// Clipping a line from P1 = (x2, y2) to P2 = (x2, y2)
public static void cohenSutherlandClip(double x1, double y1,
double x2, double y2)
{
// Compute region codes for P1, P2
int code1 = computeCode(x1, y1);
int code2 = computeCode(x2, y2);
// Initialize line as outside the rectangular window
bool accept = false;
while (true) {
if ((code1 == 0) && (code2 == 0)) {
// If both endpoints lie within rectangle
accept = true;
break;
}
else if ((code1 & code2)!=0) {
// If both endpoints are outside rectangle,
// in same region
break;
}
else {
// Some segment of line lies within the
// rectangle
int code_out;
double x=0.0;
double y=0.0;
// At least one endpoint is outside the
// rectangle, pick it.
if (code1 != 0)
code_out = code1;
else
code_out = code2;
// Find intersection point;
// using formulas y = y1 + slope * (x - x1),
// x = x1 + (1 / slope) * (y - y1)
if ((code_out & TOP)!=0) {
// point is above the clip rectangle
x = x1 + (x2 - x1) * (y_max - y1) / (y2 - y1);
y = y_max;
}
else if ((code_out & BOTTOM)!=0) {
// point is below the rectangle
x = x1 + (x2 - x1) * (y_min - y1) / (y2 - y1);
y = y_min;
}
else if ((code_out & RIGHT)!=0) {
// point is to the right of rectangle
y = y1 + (y2 - y1) * (x_max - x1) / (x2 - x1);
x = x_max;
}
else if ((code_out & LEFT)!=0) {
// point is to the left of rectangle
y = y1 + (y2 - y1) * (x_min - x1) / (x2 - x1);
x = x_min;
}
// Now intersection point x, y is found
// We replace point outside rectangle
// by intersection point
if (code_out == code1) {
x1 = x;
y1 = y;
code1 = computeCode(x1, y1);
}
else {
x2 = x;
y2 = y;
code2 = computeCode(x2, y2);
}
}
}
if (accept) {
Console.WriteLine("Line accepted from "+x1+", "
+y1+" to "+x2+", "+y2);
// Here the user can add code to display the rectangle
// along with the accepted (portion of) lines
}
else
Console.WriteLine("Line rejected");
}
// Driver code
static public void Main (){
// First Line segment
// P11 = (5, 5), P12 = (7, 7)
cohenSutherlandClip(5, 5, 7, 7);
// Second Line segment
// P21 = (7, 9), P22 = (11, 4)
cohenSutherlandClip(7, 9, 11, 4);
// Third Line segment
// P31 = (1, 5), P32 = (4, 1)
cohenSutherlandClip(1, 5, 4, 1);
}
}
// This code is contributed by akashish__
JavaScript
// JavaScript program to implement Cohen Sutherland algorithm
// for line clipping.
// Defining region codes
const INSIDE = 0; // 0000
const LEFT = 1; // 0001
const RIGHT = 2; // 0010
const BOTTOM = 4; // 0100
const TOP = 8; // 1000
// Defining x_max, y_max and x_min, y_min for
// clipping rectangle. Since diagonal points are
// enough to define a rectangle
const x_max = 10;
const y_max = 8;
const x_min = 4;
const y_min = 4;
// Function to compute region code for a point(x, y)
function computeCode(x, y)
{
// initialized as being inside
let code = INSIDE;
if (x < x_min) // to the left of rectangle
code |= LEFT;
else if (x > x_max) // to the right of rectangle
code |= RIGHT;
if (y < y_min) // below the rectangle
code |= BOTTOM;
else if (y > y_max) // above the rectangle
code |= TOP;
return code;
}
// Implementing Cohen-Sutherland algorithm
// Clipping a line from P1 = (x2, y2) to P2 = (x2, y2)
function cohenSutherlandClip(x1, y1, x2, y2)
{
// Compute region codes for P1, P2
let code1 = computeCode(x1, y1);
let code2 = computeCode(x2, y2);
// Initialize line as outside the rectangular window
let accept = false;
while (true) {
if ((code1 == 0) && (code2 == 0)) {
// If both endpoints lie within rectangle
accept = true;
break;
}
else if (code1 & code2) {
// If both endpoints are outside rectangle,
// in same region
break;
}
else {
// Some segment of line lies within the
// rectangle
let code_out;
let x, y;
// At least one endpoint is outside the
// rectangle, pick it.
if (code1 != 0)
code_out = code1;
else
code_out = code2;
// Find intersection point;
// using formulas y = y1 + slope * (x - x1),
// x = x1 + (1 / slope) * (y - y1)
if (code_out & TOP) {
// point is above the clip rectangle
x = x1 + (x2 - x1) * (y_max - y1) / (y2 - y1);
y = y_max;
}
else if (code_out & BOTTOM) {
// point is below the rectangle
x = x1 + (x2 - x1) * (y_min - y1) / (y2 - y1);
y = y_min;
}
else if (code_out & RIGHT) {
// point is to the right of rectangle
y = y1 + (y2 - y1) * (x_max - x1) / (x2 - x1);
x = x_max;
}
else if (code_out & LEFT) {
// point is to the left of rectangle
y = y1 + (y2 - y1) * (x_min - x1) / (x2 - x1);
x = x_min;
}
// Now intersection point x, y is found
// We replace point outside rectangle
// by intersection point
if (code_out == code1) {
x1 = x;
y1 = y;
code1 = computeCode(x1, y1);
}
else {
x2 = x;
y2 = y;
code2 = computeCode(x2, y2);
}
}
}
if (accept) {
console.log("Line accepted from", x1, ",", y1, "to", x2, ",", y2);
// Here the user can add code to display the rectangle
// along with the accepted (portion of) lines
}
else
console.log("Line rejected");
}
// Driver code
// First Line segment
// P11 = (5, 5), P12 = (7, 7)
cohenSutherlandClip(5, 5, 7, 7);
// Second Line segment
// P21 = (7, 9), P22 = (11, 4)
cohenSutherlandClip(7, 9, 11, 4);
// Third Line segment
// P31 = (1, 5), P32 = (4, 1)
cohenSutherlandClip(1, 5, 4, 1);
// The code is contributed by Nidhi goel
Python3
# Python program to implement Cohen Sutherland algorithm
# for line clipping.
# Defining region codes
INSIDE = 0 # 0000
LEFT = 1 # 0001
RIGHT = 2 # 0010
BOTTOM = 4 # 0100
TOP = 8 # 1000
# Defining x_max, y_max and x_min, y_min for rectangle
# Since diagonal points are enough to define a rectangle
x_max = 10.0
y_max = 8.0
x_min = 4.0
y_min = 4.0
# Function to compute region code for a point(x, y)
def computeCode(x, y):
code = INSIDE
if x < x_min: # to the left of rectangle
code |= LEFT
elif x > x_max: # to the right of rectangle
code |= RIGHT
if y < y_min: # below the rectangle
code |= BOTTOM
elif y > y_max: # above the rectangle
code |= TOP
return code
# Implementing Cohen-Sutherland algorithm
# Clipping a line from P1 = (x1, y1) to P2 = (x2, y2)
# Implementing Cohen-Sutherland algorithm
# Clipping a line from P1 = (x1, y1) to P2 = (x2, y2)
def cohenSutherlandClip(x1, y1, x2, y2):
# Compute region codes for P1, P2
code1 = computeCode(x1, y1)
code2 = computeCode(x2, y2)
accept = False
while True:
# If both endpoints lie within rectangle
if code1 == 0 and code2 == 0:
accept = True
break
# If both endpoints are outside rectangle
elif (code1 & code2) != 0:
break
# Some segment lies within the rectangle
else:
# Line needs clipping
# At least one of the points is outside,
# select it
x = 1.0
y = 1.0
if code1 != 0:
code_out = code1
else:
code_out = code2
# Find intersection point
# using formulas y = y1 + slope * (x - x1),
# x = x1 + (1 / slope) * (y - y1)
if code_out & TOP:
# Point is above the clip rectangle
x = x1 + (x2 - x1) * (y_max - y1) / (y2 - y1)
y = y_max
elif code_out & BOTTOM:
# Point is below the clip rectangle
x = x1 + (x2 - x1) * (y_min - y1) / (y2 - y1)
y = y_min
elif code_out & RIGHT:
# Point is to the right of the clip rectangle
y = y1 + (y2 - y1) * (x_max - x1) / (x2 - x1)
x = x_max
elif code_out & LEFT:
# Point is to the left of the clip rectangle
y = y1 + (y2 - y1) * (x_min - x1) / (x2 - x1)
x = x_min
# Now intersection point (x, y) is found
# We replace point outside clipping rectangle
# by intersection point
if code_out == code1:
x1 = x
y1 = y
code1 = computeCode(x1, y1)
else:
x2 = x
y2 = y
code2 = computeCode(x2, y2)
if accept:
print("Line accepted from %.2f, %.2f to %.2f, %.2f" % (x1, y1, x2, y2))
# Here the user can add code to display the rectangle
# along with the accepted (portion of) lines
else:
print("Line rejected")
# Driver script
# First line segment
# P11 = (5, 5), P12 = (7, 7)
cohenSutherlandClip(5, 5, 7, 7)
# Second line segment
# P21 = (7, 9), P22 = (11, 4)
cohenSutherlandClip(7, 9, 11, 4)
# Third line segment
# P31 = (1, 5), P32 = (4, 1)
cohenSutherlandClip(1, 5, 4, 1)
Output:
Line accepted from 5.00, 5.00 to 7.00, 7.00
Line accepted from 7.80, 8.00 to 10.00, 5.25
Line rejected
Below is C++ code with Graphics using graphics.h
C++
// C++ program to implement Cohen Sutherland algorithm
// for line clipping.
// including libraries
#include <bits/stdc++.h>
#include <graphics.h>
using namespace std;
// Global Variables
int xmin, xmax, ymin, ymax;
// Lines where co-ordinates are (x1, y1) and (x2, y2)
struct lines {
int x1, y1, x2, y2;
};
// This will return the sign required.
int sign(int x)
{
if (x > 0)
return 1;
else
return 0;
}
// CohenSutherLand LineClipping Algorithm As Described in theory.
// This will clip the lines as per window boundaries.
void clip(struct lines mylines)
{
// arrays will store bits
// Here bits implies initial Point whereas byte implies end points
int bits[4], byte[4], i, var;
// setting color of graphics to be RED
setcolor(RED);
// Finding Bits
bits[0] = sign(xmin - mylines.x1);
byte[0] = sign(xmin - mylines.x2);
bits[1] = sign(mylines.x1 - xmax);
byte[1] = sign(mylines.x2 - xmax);
bits[2] = sign(ymin - mylines.y1);
byte[2] = sign(ymin - mylines.y2);
bits[3] = sign(mylines.y1 - ymax);
byte[3] = sign(mylines.y2 - ymax);
// initial will used for initial coordinates and end for final
string initial = "", end = "", temp = "";
// convert bits to string
for (i = 0; i < 4; i++) {
if (bits[i] == 0)
initial += '0';
else
initial += '1';
}
for (i = 0; i < 4; i++) {
if (byte[i] == 0)
end += '0';
else
end += '1';
}
// finding slope of line y=mx+c as (y-y1)=m(x-x1)+c
// where m is slope m=dy/dx;
float m = (mylines.y2 - mylines.y1) / (float)(mylines.x2 - mylines.x1);
float c = mylines.y1 - m * mylines.x1;
// if both points are inside the Accept the line and draw
if (initial == end && end == "0000") {
// inbuilt function to draw the line from(x1, y1) to (x2, y2)
line(mylines.x1, mylines.y1, mylines.x2, mylines.y2);
return;
}
// this will contain cases where line maybe totally outside for partially inside
else {
// taking bitwise end of every value
for (i = 0; i < 4; i++) {
int val = (bits[i] & byte[i]);
if (val == 0)
temp += '0';
else
temp += '1';
}
// as per algo if AND is not 0000 means line is completely outside hence draw nothing and return
if (temp != "0000")
return;
// Here contain cases of partial inside or outside
// So check for every boundary one by one
for (i = 0; i < 4; i++) {
// if both bit are same hence we cannot find any intersection with boundary so continue
if (bits[i] == byte[i])
continue;
// Otherwise there exist a intersection
// Case when initial point is in left xmin
if (i == 0 && bits[i] == 1) {
var = round(m * xmin + c);
mylines.y1 = var;
mylines.x1 = xmin;
}
// Case when final point is in left xmin
if (i == 0 && byte[i] == 1) {
var = round(m * xmin + c);
mylines.y2 = var;
mylines.x2 = xmin;
}
// Case when initial point is in right of xmax
if (i == 1 && bits[i] == 1) {
var = round(m * xmax + c);
mylines.y1 = var;
mylines.x1 = xmax;
}
// Case when final point is in right of xmax
if (i == 1 && byte[i] == 1) {
var = round(m * xmax + c);
mylines.y2 = var;
mylines.x2 = xmax;
}
// Case when initial point is in top of ymin
if (i == 2 && bits[i] == 1) {
var = round((float)(ymin - c) / m);
mylines.y1 = ymin;
mylines.x1 = var;
}
// Case when final point is in top of ymin
if (i == 2 && byte[i] == 1) {
var = round((float)(ymin - c) / m);
mylines.y2 = ymin;
mylines.x2 = var;
}
// Case when initial point is in bottom of ymax
if (i == 3 && bits[i] == 1) {
var = round((float)(ymax - c) / m);
mylines.y1 = ymax;
mylines.x1 = var;
}
// Case when final point is in bottom of ymax
if (i == 3 && byte[i] == 1) {
var = round((float)(ymax - c) / m);
mylines.y2 = ymax;
mylines.x2 = var;
}
// Updating Bits at every point
bits[0] = sign(xmin - mylines.x1);
byte[0] = sign(xmin - mylines.x2);
bits[1] = sign(mylines.x1 - xmax);
byte[1] = sign(mylines.x2 - xmax);
bits[2] = sign(ymin - mylines.y1);
byte[2] = sign(ymin - mylines.y2);
bits[3] = sign(mylines.y1 - ymax);
byte[3] = sign(mylines.y2 - ymax);
} // end of for loop
// Initialize initial and end to NULL
initial = "", end = "";
// Updating strings again by bit
for (i = 0; i < 4; i++) {
if (bits[i] == 0)
initial += '0';
else
initial += '1';
}
for (i = 0; i < 4; i++) {
if (byte[i] == 0)
end += '0';
else
end += '1';
}
// If now both points lie inside or on boundary then simply draw the updated line
if (initial == end && end == "0000") {
line(mylines.x1, mylines.y1, mylines.x2, mylines.y2);
return;
}
// else line was completely outside hence rejected
else
return;
}
}
// Driver Function
int main()
{
int gd = DETECT, gm;
// Setting values of Clipping window
xmin = 40;
xmax = 100;
ymin = 40;
ymax = 80;
// initialize the graph
initgraph(&gd, &gm, NULL);
// Drawing Window using Lines
line(xmin, ymin, xmax, ymin);
line(xmax, ymin, xmax, ymax);
line(xmax, ymax, xmin, ymax);
line(xmin, ymax, xmin, ymin);
// Assume 4 lines to be clipped
struct lines mylines[4];
// Setting the coordinated of 4 lines
mylines[0].x1 = 30;
mylines[0].y1 = 65;
mylines[0].x2 = 55;
mylines[0].y2 = 30;
mylines[1].x1 = 60;
mylines[1].y1 = 20;
mylines[1].x2 = 100;
mylines[1].y2 = 90;
mylines[2].x1 = 60;
mylines[2].y1 = 100;
mylines[2].x2 = 80;
mylines[2].y2 = 70;
mylines[3].x1 = 85;
mylines[3].y1 = 50;
mylines[3].x2 = 120;
mylines[3].y2 = 75;
// Drawing Initial Lines without clipping
for (int i = 0; i < 4; i++) {
line(mylines[i].x1, mylines[i].y1,
mylines[i].x2, mylines[i].y2);
delay(1000);
}
// Drawing clipped Line
for (int i = 0; i < 4; i++) {
// Calling clip() which in term clip the line as per window and draw it
clip(mylines[i]);
delay(1000);
}
delay(4000);
getch();
// For Closing the graph.
closegraph();
return 0;
}
Java
import java.util.ArrayList;
public class Main {
// Global Variables
static int xmin = 0, xmax = 0, ymin = 0, ymax = 0;
// Lines where co-ordinates are (x1, y1) and (x2, y2)
static class Lines {
int x1, y1, x2, y2;
public Lines(int x1, int y1, int x2, int y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
}
}
// This will return the sign required.
static int sign(int x) {
return x > 0 ? 1 : 0;
}
// CohenSutherLand LineClipping Algorithm As Described in theory.
// This will clip the lines as per window boundaries.
static void clip(Lines mylines) {
// arrays will store bits
// Here bits implies initial Point whereas byteArray implies end points
int[] bits = new int[4];
int[] byteArray = new int[4];
// Finding Bits
bits[0] = sign(xmin - mylines.x1);
byteArray[0] = sign(xmin - mylines.x2);
bits[1] = sign(mylines.x1 - xmax);
byteArray[1] = sign(mylines.x2 - xmax);
bits[2] = sign(ymin - mylines.y1);
byteArray[2] = sign(ymin - mylines.y2);
bits[3] = sign(mylines.y1 - ymax);
byteArray[3] = sign(mylines.y2 - ymax);
// initial will used for initial coordinates and end for final
String initial = "";
String end = "";
for (int bit : bits) {
initial += bit;
}
for (int b : byteArray) {
end += b;
}
String temp = "";
// finding slope of line y=mx+c as (y-y1)=m(x-x1)+c
// where m is slope m=dy/dx;
double m = (double)(mylines.y2 - mylines.y1) / (mylines.x2 - mylines.x1);
double c = mylines.y1 - m * mylines.x1;
// if both points are inside the Accept the line and draw
if (initial.equals(end) && end.equals("0000")) {
// plotting the line from (x1, y1) to (x2, y2)
System.out.println("Line from (" + mylines.x1 + ", " + mylines.y1 + ") to (" + mylines.x2 + ", " + mylines.y2 + ")");
return;
}
// this will contain cases where line maybe totally outside for partially inside
else {
// taking bitwise end of every value
for (int i = 0; i < 4; i++) {
int val = bits[i] & byteArray[i];
temp += val == 0 ? '0' : '1';
}
// as per algo if AND is not 0000 means line is completely outside hence draw nothing and return
if (!temp.equals("0000")) {
return;
}
// Here contain cases of partial inside or outside
// So check for every boundary one by one
for (int i = 0; i < 4; i++) {
// if both bit are same hence we cannot find any intersection with boundary so continue
if (bits[i] == byteArray[i]) {
continue;
}
// Otherwise there exist an intersection
// Case when initial point is in left xmin
if (i == 0 && bits[i] == 1) {
int tvar = (int)Math.round(m * xmin + c);
mylines.y1 = tvar;
mylines.x1 = xmin;
}
// Case when final point is in left xmin
if (i == 0 && byteArray[i] == 1) {
int tvar = (int)Math.round(m * xmin + c);
mylines.y2 = tvar;
mylines.x2 = xmin;
}
// Case when initial point is in right of xmax
if (i == 1 && bits[i] == 1) {
int tvar = (int)Math.round(m * xmax + c);
mylines.y1 = tvar;
mylines.x1 = xmax;
}
// Case when final point is in right of xmax
if (i == 1 && byteArray[i] == 1) {
int tvar = (int)Math.round(m * xmax + c);
mylines.y2 = tvar;
mylines.x2 = xmax;
}
// Case when initial point is in top of ymin
if (i == 2 && bits[i] == 1) {
int tvar = (int)Math.round((ymin - c) / m);
mylines.y1 = ymin;
mylines.x1 = tvar;
}
// Case when final point is in top of ymin
if (i == 2 && byteArray[i] == 1) {
int tvar = (int)Math.round((ymin - c) / m);
mylines.y2 = ymin;
mylines.x2 = tvar;
}
// Case when initial point is in bottom of ymax
if (i == 3 && bits[i] == 1) {
int tvar = (int)Math.round((ymax - c) / m);
mylines.y1 = ymax;
mylines.x1 = tvar;
}
// Case when final point is in bottom of ymax
if (i == 3 && byteArray[i] == 1) {
int tvar = (int)Math.round((ymax - c) / m);
mylines.y2 = ymax;
mylines.x2 = tvar;
}
// Updating Bits at every point
bits[0] = sign(xmin - mylines.x1);
byteArray[0] = sign(xmin - mylines.x2);
bits[1] = sign(mylines.x1 - xmax);
byteArray[1] = sign(mylines.x2 - xmax);
bits[2] = sign(ymin - mylines.y1);
byteArray[2] = sign(ymin - mylines.y2);
bits[3] = sign(mylines.y1 - ymax);
byteArray[3] = sign(mylines.y2 - ymax);
}
// If now both points lie inside or on boundary then simply draw the updated line
if (initial.equals(end) && end.equals("0000")) {
System.out.println("Line from (" + mylines.x1 + ", " + mylines.y1 + ") to (" + mylines.x2 + ", " + mylines.y2 + ")");
return;
}
// else line was completely outside hence rejected
else {
return;
}
}
}
// Driver Function
public static void main(String[] args) {
// Setting values of Clipping window
xmin = 40;
xmax = 100;
ymin = 40;
ymax = 80;
// Assume 4 lines to be clipped
ArrayList<Lines> mylines = new ArrayList<>();
// Setting the coordinates of 4 lines
mylines.add(new Lines(30, 65, 55, 30));
mylines.add(new Lines(60, 20, 100, 90));
mylines.add(new Lines(60, 100, 80, 70));
mylines.add(new Lines(85, 50, 120, 75));
// Drawing Initial Lines without clipping
for (Lines line : mylines) {
System.out.println("Line from (" + line.x1 + ", " + line.y1 + ") to (" + line.x2 + ", " + line.y2 + ")");
}
// Drawing clipped Line
for (Lines line : mylines) {
// Calling clip() which in term clip the line as per window and draw it
clip(line);
}
}
}
C#
using System;
// Class to represent a line with two points (x1, y1) and (x2, y2)
public class Lines
{
public double x1, y1, x2, y2;
public Lines(double x1, double y1, double x2, double y2)
{
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
}
}
public class Program
{
// Define the window boundaries
static double xmin = 0, xmax = 0, ymin = 0, ymax = 0;
// Function to return 1 if x is greater than 0, and 0 otherwise
static int Sign(double x)
{
return x > 0 ? 1 : 0;
}
// Function to implement the Cohen-Sutherland algorithm
static void Clip(Lines mylines)
{
// Define the arrays to hold the bits for the initial and end points
int[] bits = new int[4];
int[] bytes = new int[4]; // Renamed 'byte' to 'bytes'
// Calculate the bits for the initial and end points
bits[0] = Sign(xmin - mylines.x1);
bytes[0] = Sign(xmin - mylines.x2);
bits[1] = Sign(mylines.x1 - xmax);
bytes[1] = Sign(mylines.x2 - xmax);
bits[2] = Sign(ymin - mylines.y1);
bytes[2] = Sign(ymin - mylines.y2);
bits[3] = Sign(mylines.y1 - ymax);
bytes[3] = Sign(mylines.y2 - ymax);
// Convert the bits to strings for comparison
string initial = string.Join("", bits);
string end = string.Join("", bytes);
string temp = "";
// Calculate the slope and y-intercept of the line
double m = (mylines.y2 - mylines.y1) / (mylines.x2 - mylines.x1);
double c = mylines.y1 - m * mylines.x1;
// If both points are inside the window, print the line
if (initial == end && end == "0000")
{
Console.WriteLine($"Line from ({mylines.x1}, {mylines.y1}) to ({mylines.x2}, {mylines.y2})");
return;
}
else
{
// Calculate the bitwise AND of the bits for the initial and end points
for (int i = 0; i < 4; i++)
{
int val = bits[i] & bytes[i]; // Changed '&&' to '&'
temp += val == 0 ? '0' : '1';
}
// If the line is completely outside the window, return
if (temp != "0000")
{
return;
}
// Check each boundary of the window
for (int i = 0; i < 4; i++)
{
// If the bit for the initial point is the same as the bit for the end point, continue
if (bits[i] == bytes[i])
{
continue;
}
// If the initial point is to the left of xmin, calculate the intersection with the left boundary
if (i == 0 && bits[i] == 1)
{
double tvar = Math.Round(m * xmin + c);
mylines.y1 = tvar;
mylines.x1 = xmin;
}
// If the end point is to the left of xmin, calculate the intersection with the left boundary
if (i == 0 && bytes[i] == 1)
{
double tvar = Math.Round(m * xmin + c);
mylines.y2 = tvar;
mylines.x2 = xmin;
}
// If the initial point is to the right of xmax, calculate the intersection with the right boundary
if (i == 1 && bits[i] == 1)
{
double tvar = Math.Round(m * xmax + c);
mylines.y1 = tvar;
mylines.x1 = xmax;
}
// If the end point is to the right of xmax, calculate the intersection with the right boundary
if (i == 1 && bytes[i] == 1)
{
double tvar = Math.Round(m * xmax + c);
mylines.y2 = tvar;
mylines.x2 = xmax;
}
// If the initial point is above ymin, calculate the intersection with the top boundary
if (i == 2 && bits[i] == 1)
{
double tvar = Math.Round((ymin - c) / m);
mylines.y1 = ymin;
mylines.x1 = tvar;
}
// If the end point is above ymin, calculate the intersection with the top boundary
if (i == 2 && bytes[i] == 1)
{
double tvar = Math.Round((ymin - c) / m);
mylines.y2 = ymin;
mylines.x2 = tvar;
}
// If the initial point is below ymax, calculate the intersection with the bottom boundary
if (i == 3 && bits[i] == 1)
{
double tvar = Math.Round((ymax - c) / m);
mylines.y1 = ymax;
mylines.x1 = tvar;
}
// If the end point is below ymax, calculate the intersection with the bottom boundary
if (i == 3 && bytes[i] == 1)
{
double tvar = Math.Round((ymax - c) / m);
mylines.y2 = ymax;
mylines.x2 = tvar;
}
// Update the bits for the initial and end points
bits[0] = Sign(xmin - mylines.x1);
bytes[0] = Sign(xmin - mylines.x2);
bits[1] = Sign(mylines.x1 - xmax);
bytes[1] = Sign(mylines.x2 - xmax);
bits[2] = Sign(ymin - mylines.y1);
bytes[2] = Sign(ymin - mylines.y2);
bits[3] = Sign(mylines.y1 - ymax);
bytes[3] = Sign(mylines.y2 - ymax);
}
// If both points are now inside the window, print the line
if (initial == end && end == "0000")
{
Console.WriteLine($"Line from ({mylines.x1}, {mylines.y1}) to ({mylines.x2}, {mylines.y2})");
return;
}
else
{
return;
}
}
}
static void Main()
{
// Set the window boundaries
xmin = 40;
xmax = 100;
ymin = 40;
ymax = 80;
// Create an array of Lines objects
Lines[] mylines = new Lines[4];
// Set the coordinates of the lines
mylines[0] = new Lines(30, 65, 55, 30);
mylines[1] = new Lines(60, 20, 100, 90);
mylines[2] = new Lines(60, 100, 80, 70);
mylines[3] = new Lines(85, 50, 120, 75);
// Print the initial lines
foreach (Lines line in mylines)
{
Console.WriteLine($"Line from ({line.x1}, {line.y1}) to ({line.x2}, {line.y2})");
}
// Clip each line and print the result
foreach (Lines line in mylines)
{
Clip(line);
}
}
}
JavaScript
// Global Variables
let xmin = 0, xmax = 0, ymin = 0, ymax = 0;
// Lines where co-ordinates are (x1, y1) and (x2, y2)
class Lines {
constructor(x1, y1, x2, y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
}
}
// This will return the sign required.
function sign(x) {
return x > 0 ? 1 : 0;
}
// CohenSutherLand LineClipping Algorithm As Described in theory.
// This will clip the lines as per window boundaries.
function clip(mylines) {
// arrays will store bits
// Here bits implies initial Point whereas byte implies end points
let bits = Array(4).fill(0);
let byte = Array(4).fill(0);
// Finding Bits
bits[0] = sign(xmin - mylines.x1);
byte[0] = sign(xmin - mylines.x2);
bits[1] = sign(mylines.x1 - xmax);
byte[1] = sign(mylines.x2 - xmax);
bits[2] = sign(ymin - mylines.y1);
byte[2] = sign(ymin - mylines.y2);
bits[3] = sign(mylines.y1 - ymax);
byte[3] = sign(mylines.y2 - ymax);
// initial will used for initial coordinates and end for final
let initial = bits.join("");
let end = byte.join("");
let temp = "";
// finding slope of line y=mx+c as (y-y1)=m(x-x1)+c
// where m is slope m=dy/dx;
let m = (mylines.y2 - mylines.y1) / (mylines.x2 - mylines.x1);
let c = mylines.y1 - m * mylines.x1;
// if both points are inside the Accept the line and draw
if (initial === end && end === "0000") {
// plotting the line from (x1, y1) to (x2, y2)
console.log(`Line from (${mylines.x1}, ${mylines.y1}) to (${mylines.x2}, ${mylines.y2})`);
return;
}
// this will contain cases where line maybe totally outside for partially inside
else {
// taking bitwise end of every value
for (let i = 0; i < 4; i++) {
let val = bits[i] & byte[i];
temp += val === 0 ? '0' : '1';
}
// as per algo if AND is not 0000 means line is completely outside hence draw nothing and return
if (temp !== "0000") {
return;
}
// Here contain cases of partial inside or outside
// So check for every boundary one by one
for (let i = 0; i < 4; i++) {
// if both bit are same hence we cannot find any intersection with boundary so continue
if (bits[i] === byte[i]) {
continue;
}
// Otherwise there exist an intersection
// Case when initial point is in left xmin
if (i === 0 && bits[i] === 1) {
let tvar = Math.round(m * xmin + c);
mylines.y1 = tvar;
mylines.x1 = xmin;
}
// Case when final point is in left xmin
if (i === 0 && byte[i] === 1) {
let tvar = Math.round(m * xmin + c);
mylines.y2 = tvar;
mylines.x2 = xmin;
}
// Case when initial point is in right of xmax
if (i === 1 && bits[i] === 1) {
let tvar = Math.round(m * xmax + c);
mylines.y1 = tvar;
mylines.x1 = xmax;
}
// Case when final point is in right of xmax
if (i === 1 && byte[i] === 1) {
let tvar = Math.round(m * xmax + c);
mylines.y2 = tvar;
mylines.x2 = xmax;
}
// Case when initial point is in top of ymin
if (i === 2 && bits[i] === 1) {
let tvar = Math.round((ymin - c) / m);
mylines.y1 = ymin;
mylines.x1 = tvar;
}
// Case when final point is in top of ymin
if (i === 2 && byte[i] === 1) {
let tvar = Math.round((ymin - c) / m);
mylines.y2 = ymin;
mylines.x2 = tvar;
}
// Case when initial point is in bottom of ymax
if (i === 3 && bits[i] === 1) {
let tvar = Math.round((ymax - c) / m);
mylines.y1 = ymax;
mylines.x1 = tvar;
}
// Case when final point is in bottom of ymax
if (i === 3 && byte[i] === 1) {
let tvar = Math.round((ymax - c) / m);
mylines.y2 = ymax;
mylines.x2 = tvar;
}
// Updating Bits at every point
bits[0] = sign(xmin - mylines.x1);
byte[0] = sign(xmin - mylines.x2);
bits[1] = sign(mylines.x1 - xmax);
byte[1] = sign(mylines.x2 - xmax);
bits[2] = sign(ymin - mylines.y1);
byte[2] = sign(ymin - mylines.y2);
bits[3] = sign(mylines.y1 - ymax);
byte[3] = sign(mylines.y2 - ymax);
}
// If now both points lie inside or on boundary then simply draw the updated line
if (initial === end && end === "0000") {
console.log(`Line from (${mylines.x1}, ${mylines.y1}) to (${mylines.x2}, ${mylines.y2})`);
return;
}
// else line was completely outside hence rejected
else {
return;
}
}
}
// Driver Function
function main() {
// Setting values of Clipping window
xmin = 40;
xmax = 100;
ymin = 40;
ymax = 80;
// Assume 4 lines to be clipped
let mylines = [];
// Setting the coordinates of 4 lines
mylines.push(new Lines(30, 65, 55, 30));
mylines.push(new Lines(60, 20, 100, 90));
mylines.push(new Lines(60, 100, 80, 70));
mylines.push(new Lines(85, 50, 120, 75));
// Drawing Initial Lines without clipping
for (let line of mylines) {
console.log(`Line from (${line.x1}, ${line.y1}) to (${line.x2}, ${line.y2})`);
}
// Drawing clipped Line
for (let line of mylines) {
// Calling clip() which in term clip the line as per window and draw it
clip(line);
}
}
main();
Python3
import matplotlib.pyplot as plt
# Global Variables
xmin, xmax, ymin, ymax = 0, 0, 0, 0
# Lines where co-ordinates are (x1, y1) and (x2, y2)
class Lines:
def __init__(self, x1, y1, x2, y2):
self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2
# This will return the sign required.
def sign(x):
if x > 0:
return 1
else:
return 0
# CohenSutherLand LineClipping Algorithm As Described in theory.
# This will clip the lines as per window boundaries.
def clip(mylines):
global xmin, xmax, ymin, ymax
# arrays will store bits
# Here bits implies initial Point whereas byte implies end points
bits = [0]*4
byte = [0]*4
# Finding Bits
bits[0] = sign(xmin - mylines.x1)
byte[0] = sign(xmin - mylines.x2)
bits[1] = sign(mylines.x1 - xmax)
byte[1] = sign(mylines.x2 - xmax)
bits[2] = sign(ymin - mylines.y1)
byte[2] = sign(ymin - mylines.y2)
bits[3] = sign(mylines.y1 - ymax)
byte[3] = sign(mylines.y2 - ymax)
# initial will used for initial coordinates and end for final
initial = "".join(map(str, bits))
end = "".join(map(str, byte))
temp = ""
# finding slope of line y=mx+c as (y-y1)=m(x-x1)+c
# where m is slope m=dy/dx;
m = (mylines.y2 - mylines.y1) / (mylines.x2 - mylines.x1)
c = mylines.y1 - m * mylines.x1
# if both points are inside the Accept the line and draw
if initial == end and end == "0000":
# plotting the line from (x1, y1) to (x2, y2)
plt.plot([mylines.x1, mylines.x2], [mylines.y1, mylines.y2], color='red')
return
# this will contain cases where line maybe totally outside for partially inside
else:
# taking bitwise end of every value
for i in range(4):
val = bits[i] & byte[i]
if val == 0:
temp += '0'
else:
temp += '1'
# as per algo if AND is not 0000 means line is completely outside hence draw nothing and return
if temp != "0000":
return
# Here contain cases of partial inside or outside
# So check for every boundary one by one
for i in range(4):
# if both bit are same hence we cannot find any intersection with boundary so continue
if bits[i] == byte[i]:
continue
# Otherwise there exist an intersection
# Case when initial point is in left xmin
if i == 0 and bits[i] == 1:
var = round(m * xmin + c)
mylines.y1 = var
mylines.x1 = xmin
# Case when final point is in left xmin
if i == 0 and byte[i] == 1:
var = round(m * xmin + c)
mylines.y2 = var
mylines.x2 = xmin
# Case when initial point is in right of xmax
if i == 1 and bits[i] == 1:
var = round(m * xmax + c)
mylines.y1 = var
mylines.x1 = xmax
# Case when final point is in right of xmax
if i == 1 and byte[i] == 1:
var = round(m * xmax + c)
mylines.y2 = var
mylines.x2 = xmax
# Case when initial point is in top of ymin
if i == 2 and bits[i] == 1:
var = round((ymin - c) / m)
mylines.y1 = ymin
mylines.x1 = var
# Case when final point is in top of ymin
if i == 2 and byte[i] == 1:
var = round((ymin - c) / m)
mylines.y2 = ymin
mylines.x2 = var
# Case when initial point is in bottom of ymax
if i == 3 and bits[i] == 1:
var = round((ymax - c) / m)
mylines.y1 = ymax
mylines.x1 = var
# Case when final point is in bottom of ymax
if i == 3 and byte[i] == 1:
var = round((ymax - c) / m)
mylines.y2 = ymax
mylines.x2 = var
# Updating Bits at every point
bits[0] = sign(xmin - mylines.x1)
byte[0] = sign(xmin - mylines.x2)
bits[1] = sign(mylines.x1 - xmax)
byte[1] = sign(mylines.x2 - xmax)
bits[2] = sign(ymin - mylines.y1)
byte[2] = sign(ymin - mylines.y2)
bits[3] = sign(mylines.y1 - ymax)
byte[3] = sign(mylines.y2 - ymax)
# If now both points lie inside or on boundary then simply draw the updated line
if initial == end and end == "0000":
plt.plot([mylines.x1, mylines.x2], [mylines.y1, mylines.y2], color='red')
return
# else line was completely outside hence rejected
else:
return
# Driver Function
def main():
global xmin, xmax, ymin, ymax
# Setting values of Clipping window
xmin = 40
xmax = 100
ymin = 40
ymax = 80
# Drawing Window using Lines
plt.plot([xmin, xmax, xmax, xmin, xmin], [ymin, ymin, ymax, ymax, ymin], color='black')
# Assume 4 lines to be clipped
mylines = []
# Setting the coordinates of 4 lines
mylines.append(Lines(30, 65, 55, 30))
mylines.append(Lines(60, 20, 100, 90))
mylines.append(Lines(60, 100, 80, 70))
mylines.append(Lines(85, 50, 120, 75))
# Drawing Initial Lines without clipping
for line in mylines:
plt.plot([line.x1, line.x2], [line.y1, line.y2], color='blue')
plt.pause(1)
# Drawing clipped Line
for line in mylines:
# Calling clip() which in term clip the line as per window and draw it
clip(line)
plt.pause(1)
plt.show()
if __name__ == "__main__":
main()
The Cohen–Sutherland algorithm can be used only on a rectangular clip window. For other convex polygon clipping windows, Cyrus–Beck algorithm is used. We will be discussing Cyrus–Beck Algorithm in next set.
Related Post :
Polygon Clipping | Sutherland–Hodgman Algorithm
Point Clipping Algorithm in Computer Graphics
Reference:
1) https://en.wikipedia.org/wiki/Cohen%E2%80%93Sutherland_algorithm
2)Book:- Computer Graphics: By Donald Hearn, M. Pauline Baker
3) College notes
Cohen–Sutherland Line Clipping Algorithm | Computer Graphics
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem