Lexicographically smallest Permutation of Array by reversing at most one Subarray
Last Updated :
11 Jul, 2022
Given an array arr[] of size N which is a permutation from 1 to N, the task is to find the lexicographically smallest permutation that can be formed by reversing at most one subarray.
Examples:
Input : arr[] = {1, 3, 4, 2, 5}
Output : 1 2 4 3 5
Explanation: The subarray from index 1 to index 3 can be reversed to get the lexicographically smallest permutation.
Input : arr[] = {4, 3, 1, 2}
Output: 1 3 4 2
Approach: The idea to solve the problem is based on the traversal of the array.
- In the given problem the lexicographically smallest permutation can be obtained by placing the least number at its correct place by one reversal by traversing from left and checking (i+1) is equal to arr[i]
- If it is not equal find the index of that i+1 in the array and reverse the subarray from ith index to the position (i+1).
Below is the implementation of the above approach.
C++
// C++ code for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the
// Lexicographically smallest
// Permutation by one subarray reversal
void lexsmallest(vector<int>& arr, int n)
{
// Initialize the variables
// To store the first and last
// Position of the subarray
int first = -1, flag = 0, find = -1, last = -1;
// Traverse the array
// And check if arr[i]!=i+1
for (int i = 0; i < n; i++) {
if (arr[i] != i + 1) {
flag = 1;
// Mark the first position
// Of the Subarray to be reversed
first = i;
find = i + 1;
break;
}
}
// If flag == 0, it is the
// Smallest permutation,
// So print the array
if (flag == 0) {
for (int i = 0; i < n; i++) {
cout << arr[i] << " ";
}
}
// Check where the minimum element is present
else {
for (int i = 0; i < n; i++) {
// It is the last position
// Of the subarray to be
// Reversed
if (arr[i] == find) {
last = i;
break;
}
}
// Reverse the subarray
// And print the array
reverse(arr.begin() + first,
arr.begin() + last + 1);
for (int i = 0; i < n; i++) {
cout << arr[i] << " ";
}
}
}
// Driver Code
int main()
{
// Initialize the array arr[]
vector<int> arr = { 1, 3, 4, 2, 5 };
int N = arr.size();
// Function call
lexsmallest(arr, N);
return 0;
}
Java
// Java code for the above approach
import java.util.*;
class GFG{
// Function to find the
// Lexicographically smallest
// Permutation by one subarray reversal
static void lexsmallest(int []arr, int n)
{
// Initialize the variables
// To store the first and last
// Position of the subarray
int first = -1, flag = 0, find = -1, last = -1;
// Traverse the array
// And check if arr[i]!=i+1
for (int i = 0; i < n; i++) {
if (arr[i] != i + 1) {
flag = 1;
// Mark the first position
// Of the Subarray to be reversed
first = i;
find = i + 1;
break;
}
}
// If flag == 0, it is the
// Smallest permutation,
// So print the array
if (flag == 0) {
for (int i = 0; i < n; i++) {
System.out.print(arr[i]+ " ");
}
}
// Check where the minimum element is present
else {
for (int i = 0; i < n; i++) {
// It is the last position
// Of the subarray to be
// Reversed
if (arr[i] == find) {
last = i;
break;
}
}
// Reverse the subarray
// And print the array
arr = reverse(arr,first,last);
for (int i = 0; i < n; i++) {
System.out.print(arr[i]+ " ");
}
}
}
static int[] reverse(int str[], int start, int end) {
// Temporary variable to store character
int temp;
while (start <= end) {
// Swapping the first and last character
temp = str[start];
str[start] = str[end];
str[end] = temp;
start++;
end--;
}
return str;
}
// Driver Code
public static void main(String[] args)
{
// Initialize the array arr[]
int []arr = { 1, 3, 4, 2, 5 };
int N = arr.length;
// Function call
lexsmallest(arr, N);
}
}
// This code contributed by shikhasingrajput
Python3
# Python code for the above approach
# Function to find the
# Lexicographically smallest
# Permutation by one subarray reversal
def lexsmallest(arr, n):
# Initialize the variables
# To store the first and last
# Position of the subarray
first = -1
flag = 0
find = -1
last = -1
# Traverse the array
# And check if arr[i]!=i+1
for i in range(0, n):
if (arr[i] != i + 1):
flag = 1
# Mark the first position
# Of the Subarray to be reversed
first = i
find = i + 1
break
# If flag == 0, it is the
# Smallest permutation,
# So print the array
if (flag == 0):
for i in range(0, n):
print(arr[i], end=" ")
# Check where the minimum element is present
else:
for i in range(0, n):
# It is the last position
# Of the subarray to be
# Reversed
if (arr[i] == find):
last = i
break
# Reverse the subarray
# And print the array
arr[first: last + 1] = arr[first: last + 1][::-1]
print(*arr)
# Driver Code
# Initialize the array arr[]
arr = [1, 3, 4, 2, 5]
N = len(arr)
# Function call
lexsmallest(arr, N)
# This code is contributed by Samim Hossain Mondal.
C#
// C# code for the above approach
using System;
class GFG{
// Function to find the
// Lexicographically smallest
// Permutation by one subarray reversal
static void lexsmallest(int []arr, int n)
{
// Initialize the variables
// To store the first and last
// Position of the subarray
int first = -1, flag = 0, find = -1, last = -1;
// Traverse the array
// And check if arr[i]!=i+1
for (int i = 0; i < n; i++) {
if (arr[i] != i + 1) {
flag = 1;
// Mark the first position
// Of the Subarray to be reversed
first = i;
find = i + 1;
break;
}
}
// If flag == 0, it is the
// Smallest permutation,
// So print the array
if (flag == 0) {
for (int i = 0; i < n; i++) {
Console.Write(arr[i]+ " ");
}
}
// Check where the minimum element is present
else {
for (int i = 0; i < n; i++) {
// It is the last position
// Of the subarray to be
// Reversed
if (arr[i] == find) {
last = i;
break;
}
}
// Reverse the subarray
// And print the array
arr = reverse(arr,first,last);
for (int i = 0; i < n; i++) {
Console.Write(arr[i]+ " ");
}
}
}
static int[] reverse(int[] str, int start, int end) {
// Temporary variable to store character
int temp;
while (start <= end)
{
// Swapping the first and last character
temp = str[start];
str[start] = str[end];
str[end] = temp;
start++;
end--;
}
return str;
}
// Driver Code
static public void Main (){
// Initialize the array arr[]
int [] arr = { 1, 3, 4, 2, 5 };
int N = arr.Length;
// Function call
lexsmallest(arr, N);
}
}
// This code is contributed by hrithikgarg03188.
JavaScript
<script>
// JavaScript code for the above approach
// Function to find the
// Lexicographically smallest
// Permutation by one subarray reversal
const lexsmallest = (arr, n) => {
// Initialize the variables
// To store the first and last
// Position of the subarray
let first = -1, flag = 0, find = -1, last = -1;
// Traverse the array
// And check if arr[i]!=i+1
for (let i = 0; i < n; i++) {
if (arr[i] != i + 1) {
flag = 1;
// Mark the first position
// Of the Subarray to be reversed
first = i;
find = i + 1;
break;
}
}
// If flag == 0, it is the
// Smallest permutation,
// So print the array
if (flag == 0) {
for (let i = 0; i < n; i++) {
document.write(`${arr[i]} `);
}
}
// Check where the minimum element is present
else {
for (let i = 0; i < n; i++) {
// It is the last position
// Of the subarray to be
// Reversed
if (arr[i] == find) {
last = i;
break;
}
}
// Reverse the subarray
// And print the array
arr.splice(first, last, ...arr.slice(first, last + 1).reverse());
for (let i = 0; i < n; i++) {
document.write(`${arr[i]} `);
}
}
}
// Driver Code
// Initialize the array arr[]
let arr = [1, 3, 4, 2, 5];
let N = arr.length;
// Function call
lexsmallest(arr, N);
// This code is contributed by rakeshsahni
</script>
Time Complexity: O(N)
Auxiliary Space: O(1)
Related Topic: Subarrays, Subsequences, and Subsets in Array
Similar Reads
Lexicographically smallest permutation of the array possible by at most one swap Given an array arr[] representing a permutation of first N natural numbers, the task is to find the lexicographically smallest permutation of the given array arr[] possible by swapping at most one pair of array elements. If it is not possible to make the array lexicographically smaller, then print "
8 min read
Lexicographically largest permutation of array possible by reversing suffix subarrays Given an array arr[] of size N, the task is to find the lexicographically largest permutation array by reversing any suffix subarrays from the array. Examples: Input: arr[] = {3, 5, 4, 1, 2}Output: 3 5 4 2 1Explanation: Reversing the suffix subarray {1, 2} generates the lexicographically largest per
7 min read
Lexicographically smallest permutation of [1, N] based on given Binary string Given a binary string S of size (N - 1), the task is to find the lexicographically smallest permutation P of the first N natural numbers such that for every index i, if S[i] equals '0' then P[i + 1] must be greater than P[i] and if S[i] equals '1' then P[i + 1] must be less than P[i]. Examples: Inpu
6 min read
Lexicographically smallest permutation of Array such that prefix sum till any index is not equal to K Given an array arr[], consisting of N distinct positive integers and an integer K, the task is to find the lexicographically smallest permutation of the array, such that the sum of elements of any prefix of the output array is not equal to the K. If there exists no such permutation, then print "-1".
7 min read
Lexicographically smallest array formed by at most one swap for every pair of adjacent indices Given an array A[] of length N, the task is to find lexicographically smallest array by swapping adjacent elements for each index atmost once. Thus, for any index: 0 <= K < N-1 , at most one swap between A[K] and A[K+1] is allowed.Example: Input: A[] = { 3, 2, 1, 4} Output: 1 3 2 4 Explanation
8 min read